

# STS5DPF20L

# P-CHANNEL 20V - $0.045\Omega$ - 5A SO-8 STripFET<sup>TM</sup> II MOSFET

**Table 1: General Features** 

| TYPE       | V <sub>DSS</sub> | R <sub>DS(on)</sub> | I <sub>D</sub> |
|------------|------------------|---------------------|----------------|
| STS5DPF20L | 20 V             | < 0.055 Ω           | 5 A            |

- TYPICAL  $R_{DS(on)} = 0.045 \Omega$
- CONDUCTION LOSSES REDUCED
- SWITCHING LOSSES REDUCED
- LOW THRESHOLD DRIVE
- STANDARD OUTLINE FOR EASY AUTOMATED SURFACE MOUNT ASSEMBLY

#### **DESCRIPTION**

This MOSFET is the latest development of STMicroelectronics unique "Single Feature Size™" strip-based process. The resulting transistor shows extremely high packing density for low onresistance, rugged avalanche characteristics and less critical alignment steps therefore a remarkable manufacturing reproducibility.

#### **APPLICATIONS**

- DC/DC CONVERTERS
- BATTERY MANAGEMENT IN NOMADIC EQUIPMENT
- POWER MANAGEMENT IN CELLULAR PHONES
- DC MOTOR DRIVE

Figure 1: Package

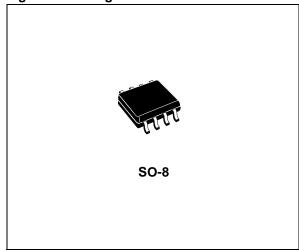
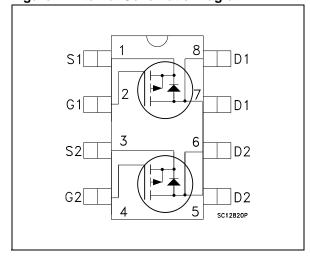




Figure 2: Internal Schematic Diagram



**Table 2: Order Codes** 

| PART NUMBER | MARKING  | PACKAGE | PACKAGING   |
|-------------|----------|---------|-------------|
| STS5DPF20L  | S5DPF20L | SO-8    | TAPE & REEL |

September 2004 1/9

**Table 3: Absolute Maximum ratings** 

| Symbol                             | Parameter                                                                                                         | Value             | Unit     |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------|----------|
| V <sub>DS</sub>                    | Drain-source Voltage (V <sub>GS</sub> = 0)                                                                        | 20                | V        |
| $V_{DGR}$                          | Drain-gate Voltage ( $R_{GS} = 20 \text{ k}\Omega$ )                                                              | 20                | V        |
| $V_{GS}$                           | Gate- source Voltage                                                                                              | ± 16              | V        |
| Ι <sub>D</sub>                     | Drain Current (continuous) at T <sub>C</sub> = 25°C<br>Single Operating                                           | 5                 | А        |
| Ι <sub>D</sub>                     | Drain Current (continuous) at T <sub>C</sub> = 100°C<br>Single Operating                                          | 4                 | А        |
| I <sub>DM</sub> (•)                | Drain Current (pulsed)                                                                                            | 20                | Α        |
| Ртот                               | Total Dissipation at $T_C = 25^{\circ}C$ Dual Operating Total Dissipation at $T_C = 25^{\circ}C$ Single Operating | 1.6<br>2          | W<br>W   |
| T <sub>j</sub><br>T <sub>stg</sub> | Operating Junction Temperature<br>Storage Temperature                                                             | 150<br>-55 to 150 | °C<br>°C |

(•) Pulse width limited by safe operating area
Note: For the P-CHANNEL MOSFET actual polarity of voltages and current has to be reversed

#### **Table 4: Thermal Data**

| Rthj-case | Thermal Resistance Junction-case Single Operating Dual Operating | 62.5<br>78 | °C/W |
|-----------|------------------------------------------------------------------|------------|------|
| Tı        | Maximum Lead Temperature For Soldering Purpose                   | 300        | °C   |

# **ELECTRICAL CHARACTERISTICS** (T<sub>CASE</sub> =25°C UNLESS OTHERWISE SPECIFIED)

#### Table 5: On/Off

| Symbol               | Parameter                                                | Test Conditions                                                                                   | Min. | Тур.           | Max            | Unit     |
|----------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------|------|----------------|----------------|----------|
| V <sub>(BR)DSS</sub> | Drain-source<br>Breakdown Voltage                        | $I_D = 250 \ \mu A, \ V_{GS} = 0$                                                                 | 20   |                |                | V        |
| I <sub>DSS</sub>     | Zero Gate Voltage<br>Drain Current (V <sub>GS</sub> = 0) | V <sub>DS</sub> = Max Rating<br>V <sub>DS</sub> = Max Rating, T <sub>C</sub> = 125°C              |      |                | 1<br>10        | μA<br>μA |
| I <sub>GSS</sub>     | Gate-body Leakage<br>Current (V <sub>DS</sub> = 0)       | V <sub>GS</sub> = ± 16V                                                                           |      |                | ±100           | nA       |
| V <sub>GS(th)</sub>  | Gate Threshold Voltage                                   | $V_{DS} = V_{GS}, I_{D} = 250 \mu A$                                                              | 1    | 1.6            | 2.5            | V        |
| R <sub>DS(on)</sub>  | Static Drain-source On Resistance                        | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 2.5 A<br>V <sub>GS</sub> = 4.5 V, I <sub>D</sub> = 2.5 A |      | 0.045<br>0.070 | 0.055<br>0.075 | $\Omega$ |

## Table 6: Dynamic

| Symbol                                                   | Parameter                                                         | Test Conditions                                | Min. | Тур.               | Max. | Unit           |
|----------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------|------|--------------------|------|----------------|
| g <sub>fs</sub> (1)                                      | Forward<br>Transconductance                                       | V <sub>DS</sub> = 15 V, I <sub>D</sub> = 2.5 A |      | 10                 |      | S              |
| C <sub>iss</sub><br>C <sub>oss</sub><br>C <sub>rss</sub> | Input Capacitance Output Capacitance Reverse Transfer Capacitance | $V_{DS} = 16V, f = 1 \text{ MHz}, V_{GS} = 0$  |      | 1350<br>490<br>130 |      | pF<br>pF<br>pF |

<sup>(1)</sup> Pulsed: Pulse duration = 300 μs, duty cycle 1.5%

2/9

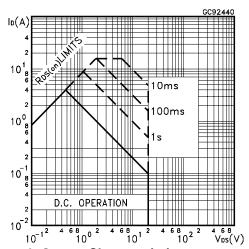
# **ELECTRICAL CHARACTERISTICS(CONTINUED)**

## Table 7: Switching On

| Symbol                                               | Parameter                                                    | Test Conditions                                                                                             | Min. | Тур.           | Max. | Unit           |
|------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------|----------------|------|----------------|
| t <sub>d(on)</sub><br>t <sub>r</sub>                 | Turn-on Delay Time<br>Rise Time                              | $V_{DD} = 15 \text{ V}, I_{D} = 2 \text{ A},$ $R_{G} = 4.7 \Omega, V_{GS} = 4.5 \text{ V}$ (see Figure 15)) |      | 25<br>35       |      | ns<br>ns       |
| Q <sub>g</sub><br>Q <sub>gs</sub><br>Q <sub>gd</sub> | Total Gate Charge<br>Gate-Source Charge<br>Gate-Drain Charge | V <sub>DD</sub> = 24 V, I <sub>D</sub> = 4 A,<br>V <sub>GS</sub> = 5 V<br>(see, Figure 18)                  |      | 12.5<br>5<br>3 | 16   | nC<br>nC<br>nC |

# **Table 8: Switching Off**

| Symbol              | Parameter                        | Test Conditions                                                                                            | Min. | Тур.      | Max. | Unit     |
|---------------------|----------------------------------|------------------------------------------------------------------------------------------------------------|------|-----------|------|----------|
| t <sub>d(off)</sub> | Turn-off Delay Time<br>Fall Time | $V_{DD} = 15 \text{ V}, I_D = 2.5 \text{ A}, R_{G} = 4.7 \Omega, V_{GS} = 4.5 \text{ V} $ (see, Figure 15) |      | 125<br>35 |      | ns<br>ns |


### **Table 9: Source-Drain Diodef**

| Symbol                                                 | Parameter                                                                    | Test Conditions                                                                                               | Min. | Тур.            | Max. | Unit          |
|--------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------|-----------------|------|---------------|
| I <sub>SD</sub>                                        | Source-drain Current                                                         |                                                                                                               |      |                 | 5    | Α             |
| I <sub>SDM</sub> (2)                                   | Source-drain Current (pulsed)                                                |                                                                                                               |      |                 | 20   | Α             |
| V <sub>SD</sub> (1)                                    | Forward On Voltage                                                           | I <sub>SD</sub> = 5 A, V <sub>GS</sub> = 0                                                                    |      |                 | 1.2  | V             |
| t <sub>rr</sub><br>Q <sub>rr</sub><br>I <sub>RRM</sub> | Reverse Recovery Time<br>Reverse Recovery Charge<br>Reverse Recovery Current | $I_{SD} = 5 \text{ A}$ , di/dt = 100 A/µs<br>$V_{DD} = 15V$ , $T_j = 150^{\circ}\text{C}$<br>(see, Figure 16) |      | 45<br>36<br>1.6 |      | ns<br>nC<br>A |

<sup>(1)</sup> Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %.

<sup>(2)</sup> Pulse width limited by safe operating area.

Figure 3: Safe Operating



**Figure 4: Output Characteristics** 

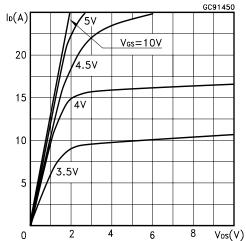



Figure 5: Transconductance

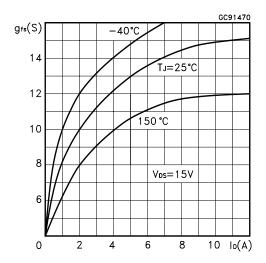
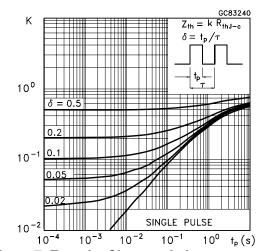




Figure 6: Thermal Impedance



**Figure 7: Transfer Characteristics** 

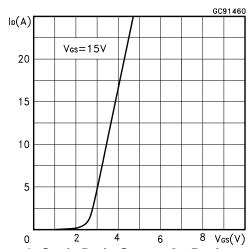
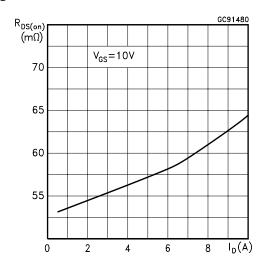




Figure 8: Static Drain-Source On Resistance



47/

Figure 9: Gate Charge vs Gate-Source Voltage

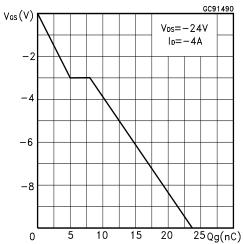



Figure 10: Normalized Gate Thereshlod Voltage vs Temperature

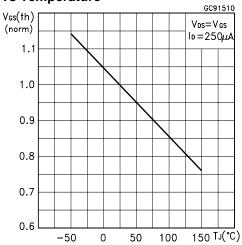



Figure 11: Source-Drain Diode Forward Characteristics

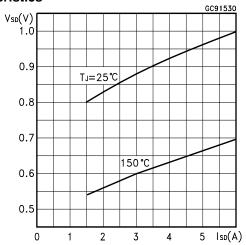



Figure 12: Capacitances Variations

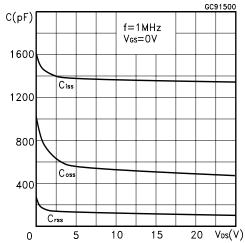



Figure 13: Normalized On Resistance vs Temperature

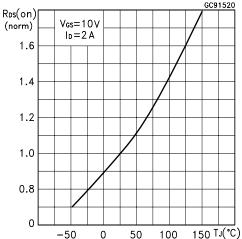



Figure 14: Unclamped Inductive Load Test Circuit

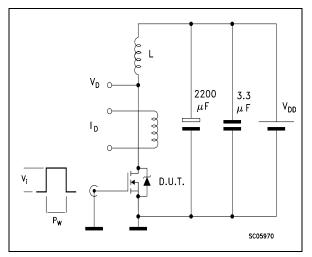



Figure 15: Switching Times Test Circuit For Resistive Load

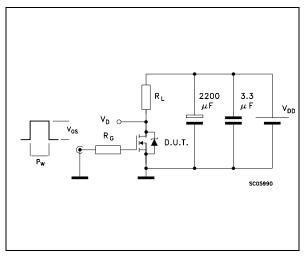



Figure 16: Test Circuit For Inductive Load Switching and Diode Recovery Times

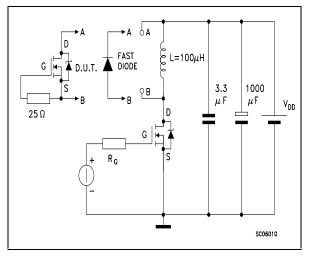



Figure 17: Unclamped Inductive Wafeform

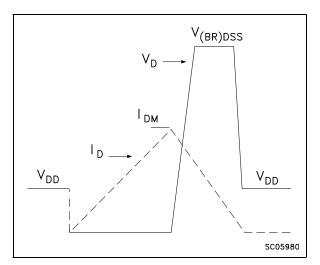
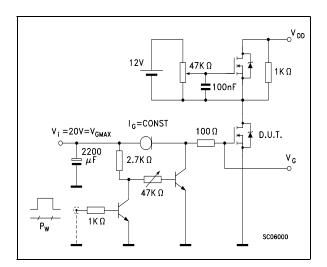
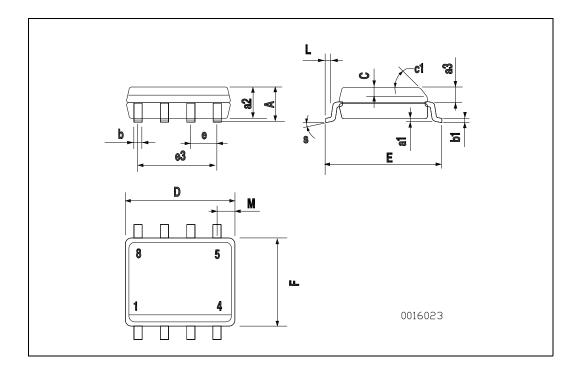





Figure 18: Gate Charge Test Circuit



| SO-8 | MECH | ANICA | L DATA |
|------|------|-------|--------|
| 30-0 |      |       |        |

| DIM.   |      | mm.  |      |        | inch  |       |
|--------|------|------|------|--------|-------|-------|
| DIIVI. | MIN. | TYP  | MAX. | MIN.   | TYP.  | MAX.  |
| Α      |      |      | 1.75 |        |       | 0.068 |
| a1     | 0.1  |      | 0.25 | 0.003  |       | 0.009 |
| a2     |      |      | 1.65 |        |       | 0.064 |
| a3     | 0.65 |      | 0.85 | 0.025  |       | 0.033 |
| b      | 0.35 |      | 0.48 | 0.013  |       | 0.018 |
| b1     | 0.19 |      | 0.25 | 0.007  |       | 0.010 |
| С      | 0.25 |      | 0.5  | 0.010  |       | 0.019 |
| c1     |      |      | 45 ( | (typ.) |       | •     |
| D      | 4.8  |      | 5.0  | 0.188  |       | 0.196 |
| Е      | 5.8  |      | 6.2  | 0.228  |       | 0.244 |
| е      |      | 1.27 |      |        | 0.050 |       |
| e3     |      | 3.81 |      |        | 0.150 |       |
| F      | 3.8  |      | 4.0  | 0.14   |       | 0.157 |
| L      | 0.4  |      | 1.27 | 0.015  |       | 0.050 |
| М      |      |      | 0.6  |        |       | 0.023 |
| S      |      | •    | 8 (n | nax.)  | •     | •     |



# **Table 10: Revision History**

| Date        | Revision | Description of Changes |
|-------------|----------|------------------------|
| 10-Sep-2004 | 2        | Complete Version       |

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

