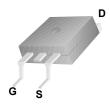
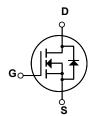


$\mathbf{SuperFET}^{\scriptscriptstyle\mathsf{TM}}$

FCB11N60 600V N-Channel MOSFET


Features


- 650V @T_J = 150°C
- Typ. $R_{DS(on)} = 0.32\Omega$
- Ultra low gate charge (typ. Q_g = 40nC)
- Low effective output capacitance (typ. Coss.eff = 95pF)
- · 100% avalanche tested

Description

SuperFETTM is, Farichild's proprietary, new generation of high voltage MOSFET family that is utilizing an advanced charge balance mechanism for outstanding low on-resistance and lower gate charge performance.

This advanced technology has been tailored to minimize conduction loss, provide superior switching performance, and withstand extreme dv/dt rate and higher avalanche energy. Consequently, SuperFET is very suitable for various AC/DC power conversion in switching mode operation for system miniaturization and higher efficiency.

Absolute Maximum Ratings

Symbol			FCB11N60	Unit
V _{DSS}			600	V
I _D	Drain Current - Continuous (T _C = 25°C) - Continuous (T _C = 100°C)		11 7	A A
I _{DM}	Drain Current - Pulsed	(Note 1)	33	А
V _{GSS}	Gate-Source voltage		± 30	V
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		340	mJ
I _{AR}	Avalanche Current (Note 1)		11	А
E _{AR}	Repetitive Avalanche Energy (Note 1)		12.5	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	4.5	V/ns
P _D	Power Dissipation (T _C = 25°C) - Derate above 2	25°C	125 1.0	W W/°C
T _{J,} T _{STG}	Operating and Storage Temperature R	ange	-55 to +150	°C
T _L	Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds		300	°C

Thermal Characteristics

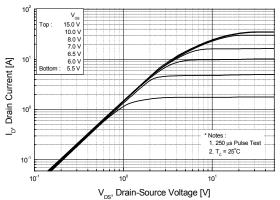
Symbol	Parameter	FCB11N60	Unit
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	1.0	°C/W
R _{θJA} *	Thermal Resistance, Junction-to-Ambient*	40	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	62.5	°C/W

^{*} When mounted on the minimum pad size recommended (PCB Mount)

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity	
FCB11N60	FCB11N60	D ² -PAK	330mm	24m	800	

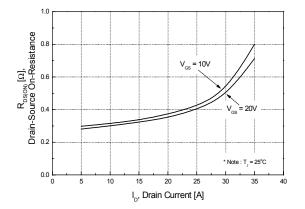
Electrical Characteristics T_C = 25°C unless otherwise noted


Symbol	Parameter	Conditions	Min	Тур	Max	Units
Off Charac	teristics			ı		
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0V$, $I_D = 250\mu A$, $T_J = 25^{\circ}C$	600			V
		V _{GS} = 0V, I _D = 250μA, T _J = 150°C		650		V
ΔBV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient	I _D = 250μA, Referenced to 25°C		0.6		V/°C
BV _{DS}	Drain-Source Avalanche Breakdown Voltage	V _{GS} = 0V, I _D = 11A		700		V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 600V, V _{GS} = 0V V _{DS} = 480V, T _C = 125°C			1 10	μA μA
I _{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} = 30V, V _{DS} = 0V			100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	V _{GS} = -30V, V _{DS} = 0V	-		-100	nA
On Charac	teristics					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250\mu A$	3.0		5.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10V, I _D = 5.5A		0.32	0.38	Ω
9 _{FS}	Forward Transconductance	V _{DS} = 40V, I _D = 5.5A (Note 4)	-	9.7		S
Dynamic C	Characteristics					
C _{iss}	Input Capacitance	$V_{DS} = 25V, V_{GS} = 0V,$		1148	1490	pF
C _{oss}	Output Capacitance	f = 1.0MHz		671	870	pF
C _{rss}	Reverse Transfer Capacitance		1	63		pF
C _{oss}	Output Capacitance	$V_{DS} = 480V, V_{GS} = 0V, f = 1.0MHz$		35		pF
Coss eff.	Effective Output Capacitance	V_{DS} = 0V to 400V, V_{GS} = 0V	-	95		pF
Switching	Characteristics					
t _{d(on)}	Turn-On Delay Time	V _{DD} = 300V, I _D = 11A		34	80	ns
t _r	Turn-On Rise Time	$R_G = 25\Omega$		98	205	ns
$t_{d(off)}$	Turn-Off Delay Time			119	250	ns
t _f	Turn-Off Fall Time	(Note 4, 5)		56	120	ns
Qg	Total Gate Charge	V _{DS} = 480V, I _D = 11A	-	40	52	nC
Q _{gs}	Gate-Source Charge	V _{GS} = 10V	-	7.2		nC
Q_{gd}	Gate-Drain Charge	(Note 4, 5)		21		nC
Drain-Sour	rce Diode Characteristics and Maximur	n Ratings			_	
I _S	Maximum Continuous Drain-Source Dio	de Forward Current			11	Α
I _{SM}	Maximum Pulsed Drain-Source Diode F	orward Current	-		33	Α
V_{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0V, I _S = 11A	-		1.4	V
t _{rr}	Reverse Recovery Time	V _{GS} = 0V, I _S = 11A	1	390		ns
Q _{rr}	Reverse Recovery Charge	$dI_F/dt = 100A/\mu s$ (Note 4)		5.7		μС

Notes

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature
- 2. I_{AS} = 5.51A, V_{DD} = 50V, R_{G} = 25 Ω , Starting T_{J} = 25°C
- 3. I $_{SD}$ \leq 11A, di/dt \leq 200A/ μ s, V_{DD} \leq BV $_{DSS}$, Starting T $_{J}$ = 25°C
- 4. Pulse Test: Pulse width $\leq 300 \mu s, \ \text{Duty Cycle} \leq 2\%$
- 5. Essentially Independent of Operating Temperature Typical Characteristics

Typical Performance Characteristics


Figure 1. On-Region Characteristics

Drain Current and Gate Voltage

os, Jan. Coulos Vinago [1]

Figure 3. On-Resistance Variation vs.

Figure 2. Transfer Characteristics

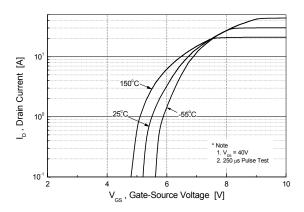


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperatue

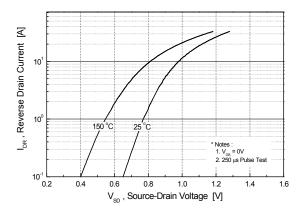


Figure 5. Capacitance Characteristics

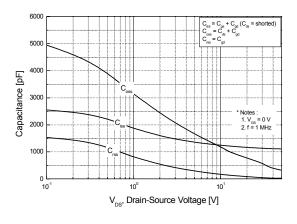
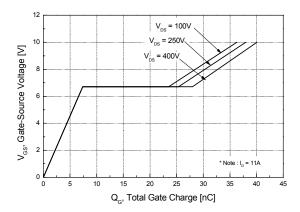



Figure 6. Gate Charge Characteristics

3

Typical Performance Characteristics (Continued)

Figure 7. Breakdown Voltage Variation vs. Temperature

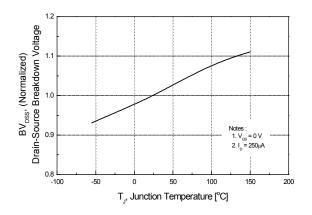


Figure 8. On-Resistance Variation vs. Temperature

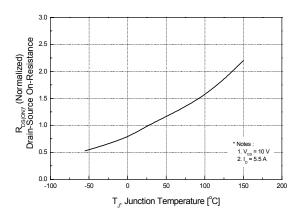


Figure 9. Maximum Safe Operating Area

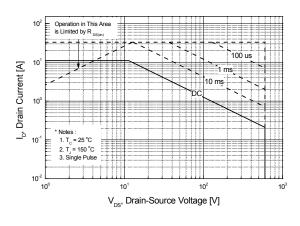


Figure 10. Maximum Drain Current vs. Case Temperature

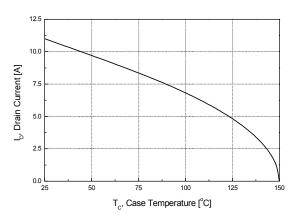
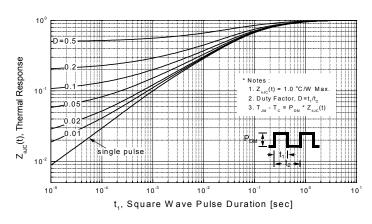
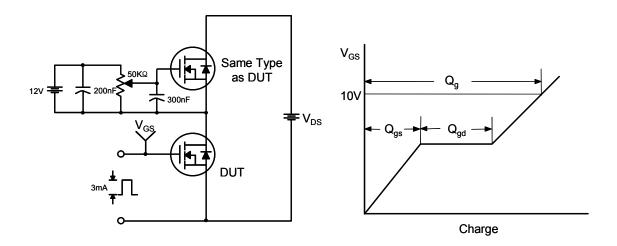
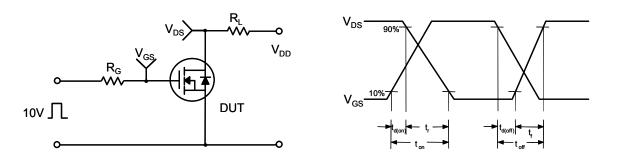
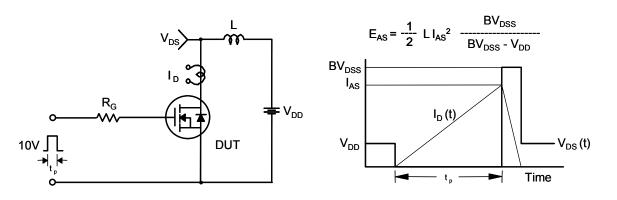
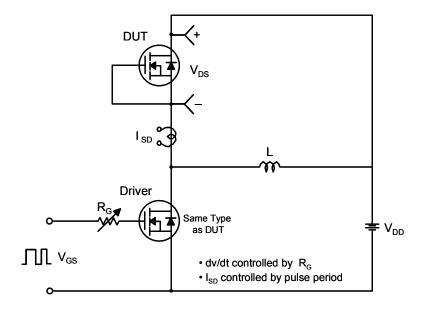




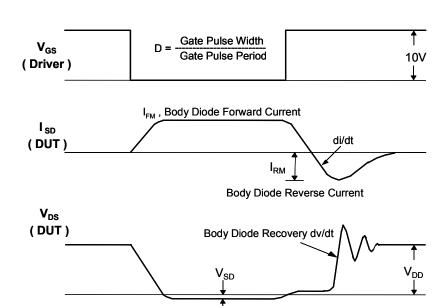
Figure 11. Transient Thermal Response Curve



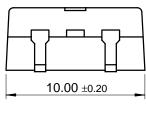
4

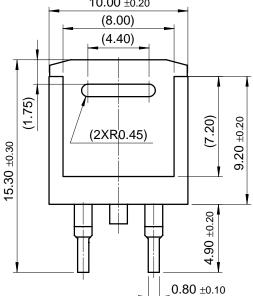

Gate Charge Test Circuit & Waveform


Resistive Switching Test Circuit & Waveforms



Unclamped Inductive Switching Test Circuit & Waveforms


Peak Diode Recovery dv/dt Test Circuit & Waveforms



Body Diode Forward Voltage Drop

Mechanical Dimensions D²-PAK 4.50 ±0.20 9.90 ±0.20 (0.40) $1.30^{\,+0.10}_{\,-0.05}$ 1.20 ±0.20 9.20 ±0.20 2.00 ± 0.10 1.40 ± 0.20 15.30 ± 0.30 0.10 ±0.15 .54 ±0.30 2.40 ± 0.20 4.90 ±0.20 (0.75)0.80 ±0.10 1.27 ± 0.10 $0.50^{\,+0.10}_{\,-0.05}$ 2.54 TYP 2.54 TYP 10.00 ±0.20 (8.00)(4.40)

Dimensions in Millimeters

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST [®]	ISOPLANAR™	PowerSaver™	SuperSOT™-8
ActiveArray™	FASTr™	LittleFET™	PowerTrench [®]	SyncFET™
Bottomless™	FPS™	MICROCOUPLER™	QFET [®]	TinyLogic [®]
Build it Now™	FRFET™	MicroFET™	QS™	TINYOPTO™
CoolFET™	GlobalOptoisolator™	MicroPak™	QT Optoelectronics™	TruTranslation™
CROSSVOLT™	GTO™	MICROWIRE™	Quiet Series™	UHC™
DOME™	HiSeC™	MSX™	RapidConfigure [™]	UltraFET [®]
EcoSPARK™	I ² C™	MSXPro™	RapidConnect™	UniFET™
E ² CMOS™	i-Lo™	OCX™	μSerDes™	VCX™
EnSigna™	ImpliedDisconnect™	OCXPro™	SILENT SWITCHER®	Wire™
FACT™	IntelliMAX™	OPTOLOGIC [®]	SMART START™	

FACT Quiet Series $^{\text{TM}}$ OPTOPLANAR $^{\text{TM}}$ SPM $^{\text{TM}}$ Across the board. Around the world. $^{\text{TM}}$ PACMAN $^{\text{TM}}$ Stealth $^{\text{TM}}$ POP $^{\text{TM}}$ SuperFET $^{\text{TM}}$ The Power Franchise $^{\text{B}}$ Power247 $^{\text{TM}}$ SuperSOT $^{\text{TM}}$ -3

The Power Franchise[™] Power247[™] SuperSOT[™]-3
Programmable Active Droop[™] PowerEdge[™] SuperSOT[™]-6

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. I16

Go

Search:

Home >> Find products >>

FCB11N60

600V N-Channel SuperFET

Contents

- General description
- Qualification Support

- Features
- Product status/pricing/packaging
- Order Samples

General description

SuperFETTM is, Farichild's proprietary, new generation of high voltage MOSFET family that is utilizing an advanced charge balance mechanism for outstanding low on-resistance and lower gate charge performance.

This advanced technology has been tailored to minimize conduction loss, provide superior switching performance, and withstand extreme dv/dt rate and higher avalanche energy. Consequently, SuperFET is very suitable for various AC/DC power conversion in switching mode operation for system miniaturization and higher efficiency.

back to top

Features

- 650V@T₁ = 150°C
- Typ. $R_{DS(on)} = 0.32\Omega$
- Ultra low gate charge (typ. Q_q = 40nC)
- Low effective output capacitance (typ. C_{oss} .eff = 95pF)
- 100% avalanche tested

back to top

Product status/pricing/packaging

BUY

BUY

Datasheet Download this datasheet

e-mail this datasheet

This page Print version

Related Links

Request samples

How to order products

Product Change Notices (PCNs)

Support

Sales support

Quality and reliability

Design center

Product	Product status	Pb-free Status	Pricing*	Package type	Leads	Packing method	Package Marking Convention**
FCB11N60TM	Full Production	Full Production	\$2.62	TO-263(D2PAK)	2	TAPE REEL	Line 1: \$Y (Fairchild logo) & Z (Asm. Plant Code) &E& 3 (3-Digit Date Code) Line 2: FCB Line 3: 11N60

^{*} Fairchild 1,000 piece Budgetary Pricing

^{**} A sample button will appear if the part is available through Fairchild's on-line samples program. If there is no sample button, please contact a <u>Fairchild distributor</u> to obtain samples

Indicates product with Pb-free second-level interconnect. For more information click here.

Package marking information for product FCB11N60 is available. Click here for more information.

back to top

Qualification Support

Click on a product for detailed qualification data

Product
FCB11N60TM

back to top

© 2007 Fairchild Semiconductor

Products | Design Center | Support | Company News | Investors | My Fairchild | Contact Us | Site Index | Privacy Policy | Site Terms & Conditions | Standard Terms & Conditions (