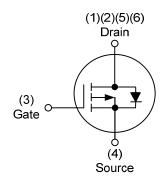


UNISONIC TECHNOLOGIES CO., LTD

UT3458 Preliminary Power MOSFET

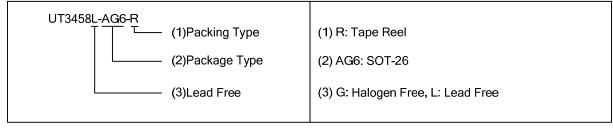
4.1 A, 60 V (D-S) N-CHANNEL POWER MOSFET

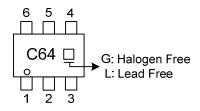

■ DESCRIPTION

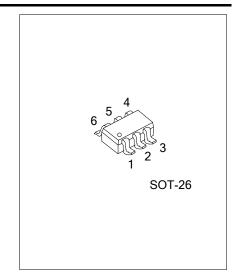
The UTC **UT3458** is N-channel enhancement mode power MOSFET using UTC's advanced technology to provide the customers with perfect $R_{\rm DS(ON)}$ and low gate charge. This device can be operated with 4.5V low gate voltage.

■ FEATURES

- * V_{DS}=60V
- * I_D =4.1A
- * $R_{DS(ON)}$ =0.1 Ω @ V_{GS} =10V, $R_{DS(ON)}$ =0.128 Ω @ V_{GS} =4.5V


■ SYMBOL


ORDERING INFORMATION


Ordering Number		Dookogo	Pin Assignment					Doolsing	
Lead Free	Halogen Free	Package	1	2	3	4	5	6	Packing
UT3458L-AG6-R	UT3458L-AG6-R	SOT-26	D	D	G	S	D	D	Tape Reel

Note: Pin Assignment: G: Gate D: Drain S: Source

■ MARKING

<u>www.unisonic.com.tw</u> 1 of 3

■ **ABSOLUTE MAXIMUM RATINGS** (T_C=25°C, unless otherwise specified)

PARAMETER			SYMBOL	RATINGS	UNIT
Drain-Source Voltage			V_{DSS}	60	V
Gate-Source Voltage			V _{GSS}	±20	V
Drain Current	Continuous	T _A =25°C		4.1	А
	(Note 2, 3)	T _A =70°C	I _D	3.2	Α
	Pulsed	•	I _{DM}	15	Α
Power Dissipation (Note 2, 3)		P _D	2	W	
Junction Temperature		TJ	+150	°C	
Storage Temperature		T _{STG}	-55~+150	°C	

Note: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Surface Mounted on FR4 Board.
- 3. t≤5 sec

■ THERMAL CHARACTERISTICS

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient (Note 2)	θ_{JA}	62.5	°C/W

■ ELECTRICAL CHARACTERISTICS (T_J=25°C, unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS		TYP	MAX	UNIT
OFF CHARACTERISTICS						
Drain-Source Breakdown Voltage	BV _{DSS}	$I_D=250\mu A, V_{GS}=0V$	60			V
Drain-Source Leakage Current	I _{DSS}	V _{DS} =48V, V _{GS} =0V			1	μΑ
Forward	I _{GSS}	V _{GS} =+20V, V _{DS} =0V			+100	nA
Gate- Source Leakage Current Reverse		V_{GS} =-20V, V_{DS} =0V			-100	nA
ON CHARACTERISTICS						
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.5		3	V
Static Prair Source On State Presistance	R _{DS(ON)}	V _{GS} =10V, I _D =3.2A		0.082	0.1	Ω
Static Drain-Source On-State Resistance		V _{GS} =4.5V, I _D =2.8A		0.105	0.128	Ω
On State Drain Current	I _{D(ON)}	V _{GS} =10V, V _{DS} =5V	10			Α
SWITCHING PARAMETERS						
Input Capacitance	C _{ISS}			350		
Output Capacitance	Coss	$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{V}, f = 1 \text{MHz}$		40		₽F
Reverse Transfer Capacitance	C _{RSS}	1		20		
Total Octa Oberra	Q_{G}	V _{DS} =10V, V _{DS} =48V, I _D =3.2A		7.1	11	
Total Gate Charge		V _{DS} =4.5V, V _{DS} =48V, I _D =3.2A		3.5	5.5	nC
Gate to Source Charge	Q_{GS}	V _{DS} =4.5V, V _{DS} =48V, I _D =3.2A		1.1		
Gate to Drain Charge	Q_{GD}	-V _{DS} -4.3V, V _{DS} -48V, I _D -3.2A		0.95		
Turn-ON Delay Time	t _{D(ON)}	V_{DD} =30V, I_{D} ≈2.5A, R_{L} =12 Ω , V_{GEN} =4.5V, R_{G} =1 Ω (Note 1, 2)		16	25	ns
Rise Time	t _R			17	30	
Turn-OFF Delay Time	t _{D(OFF)}			12	20	
Fall Time	t _F			10	15	
Turn-ON Delay Time	t _{D(ON)}	V_{DD} =30V, I_{D} ≈2.5A, R_{L} =12 Ω , V_{GEN} =10V, R_{G} =2.5 Ω (Note 1, 2)		5	10	
Rise Time	t _R			12	20	
Turn-OFF Delay Time	t _{D(OFF)}			18	30	
Fall Time	t _F			10	15	
SOURCE- DRAIN DIODE RATINGS AND	CHARACTER	RISTICS				
Maximum Body-Diode Continuous Current	Is				2.9	Α
Maximum Body-Diode Pulsed Current	I _{SM}				10	Α
Drain-Source Diode Forward Voltage	V_{SD}	I _S =2.5A, V _{GS} =0V		0.8	1.2	V
Body Diode Reverse Recovery Time	t _{RR}	I _F =2.5A, di/dt=100A/μs (Note 1)		25	50	ns

Notes: 1. Pulse Test: Pulse width ≤ 300µs, Duty cycle ≤ 2%

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

^{2.} Guaranteed by design, not subject to production testing.