## 74VHCT16373A

- HIGH SPEED:
$t_{P D}=5.0 \mathrm{~ns}$ (TYP.) at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
- LOW POWER DISSIPATION: $\mathrm{I}_{\mathrm{CC}}=4 \mu \mathrm{~A}$ (MAX.) at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- COMPATIBLE WITH TTL OUTPUTS: $\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}$ (MIN.) $\mathrm{V}_{\mathrm{IL}}=0.8$ (MAX.)
- POWER DOWN PROTECTION ON INPUTS
- SYMMETRICAL OUTPUT IMPEDANCE:

$$
\left|\mathrm{I}_{\mathrm{OH}}\right|=\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}(\mathrm{MIN})
$$

- BALANCED PROPAGATION DELAYS:
$t_{\text {PLH }} \cong t_{\text {PHL }}$
- OPERATING VOLTAGE RANGE:
$\mathrm{V}_{\mathrm{CC}}(\mathrm{OPR})=4.5 \mathrm{~V}$ to 5.5 V
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 16373
- IMPROVED LATCH-UP IMMUNITY
- LOW NOISE: $\mathrm{V}_{\mathrm{OLP}}=0.9 \mathrm{~V}$ (MAX.)


## DESCRIPTION

The 74VHCT16373A is an advanced high-speed CMOS 16 BIT D-TYPE LATCH with 3 STATE OUTPUTS NON INVERTING fabricated with sub-micron silicon gate and double-layer metal wiring $\mathrm{C}^{2} \mathrm{MOS}$ technology.
These 16 bit D-TYPE latches are byte controlled by two latch enable inputs (nLE) and two output enable inputs( $\overline{\mathrm{nOE}})$.
While the nLE input is held at a high level, the nQ outputs will follow the data (D) inputs.
When the nLE is taken LOW, the nQ outputs will be latched at the logic level of $D$ data inputs.
When the ( $\overline{\mathrm{nOE}}$ ) input is low, the nQ outputs will be in a normal logic state (high or low logic level); when $\overline{\mathrm{nOE}}$ is at high level ,the outputs will be in a high impedance state.
Power down protection is provided on all inputs and 0 to 7 V can be accepted on inputs with no regard to the supply voltage. This device can be used to interface 5 V to 3 V .
All inputs and outputs are equipped with protection circuits against static discharge, giving them 2KV ESD immunity and transient excess voltage.


## ORDER CODES

| PACKAGE | TUBE | T \& R |
| :---: | :---: | :---: |
| TSSOP |  | 74VHCT16373ATTR |

PIN CONNECTION

| 10 E | 1 |
| :--- | :--- | :--- | :--- |

## INPUT EQUIVALENT CIRCUIT



PIN DESCRIPTION

| PIN No | SYMBOL | NAME AND FUNCTION |
| :---: | :---: | :--- |
| 1 | $1 \overline{\mathrm{OE}}$ | 3 State Output Enable <br> Input (Active LOW) |
| $2,3,5,6,8,9$, <br> 11,12 | 1Q0 to 1Q7 | 3-State Outputs |
| $13,14,16,17$, <br> $19,20,22,23$ | 2Q0 to 2Q7 | 3 3-State Outputs |
| 24 | $2 \overline{\mathrm{OE}}$ | 3 State Output Enable <br> Input (Active LOW) |
| 25 | 2 LE | Latch Enable Input |
| $36,35,33,32$, <br> $30,29,27,26$ | 2D0 to 2D7 | Data Inputs |
| $47,46,44,43$, <br> $41,40,38,37$ | 1 D0 to 1D7 | Data Inputs |
| 48 | 1 LE | Latch Enable Input |
| $4,10,15,21$, <br> $28,34,39,45$ | GND | Ground (OV) |
| $7,18,31,42$ | VCC | Positive Supply Voltage |

## TRUTH TABLE

| INPUTS |  |  | OUTPUT |
| :---: | :---: | :---: | :---: |
| $\overline{\mathbf{O E}}$ | LE | $\mathbf{D}$ | $\mathbf{Q}$ |
| $H$ | X | X | Z |
| L | L | X | NO CHANGE $^{*}$ |
| L | H | L | L |
| L | H | H | H |

Z : High Impedance
*: Q outputs are latched at the time when the LE input is taken low logic level.

IEC LOGIC SYMBOLS


## LOGIC DIAGRAM



This logic diagram has not to be used to estimate propagation delays
ABSOLUTE MAXIMUM RATINGS

| Symbol | Parameter | Value | Unit |
| :---: | :--- | :---: | :---: |
| $\mathrm{V}_{\mathrm{CC}}$ | Supply Voltage | -0.5 to +7.0 | V |
| $\mathrm{~V}_{\mathrm{I}}$ | DC Input Voltage | -0.5 to +7.0 | V |
| $\mathrm{~V}_{\mathrm{O}}$ | DC Output Voltage | -0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$ | V |
| $\mathrm{I}_{\mathrm{IK}}$ | DC Input Diode Current | -20 | mA |
| $\mathrm{I}_{\mathrm{OK}}$ | DC Output Diode Current | $\pm 20$ | mA |
| $\mathrm{I}_{\mathrm{O}}$ | DC Output Current | $\pm 25$ | mA |
| $\mathrm{I}_{\mathrm{CC}}$ or $\mathrm{I}_{\mathrm{GND}}$ | DC $\mathrm{V}_{\mathrm{CC}}$ or Ground Current | $\pm 75$ | mA |
| $\mathrm{~T}_{\text {stg }}$ | Storage Temperature | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{L}}$ | Lead Temperature (10 sec) | 300 | ${ }^{\circ} \mathrm{C}$ |

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied

## RECOMMENDED OPERATING CONDITIONS

| Symbol | Parameter | Value | Unit |
| :---: | :--- | :---: | :---: |
| $\mathrm{V}_{\mathrm{CC}}$ | Supply Voltage | 4.5 to 5.5 | V |
| $\mathrm{~V}_{\mathrm{I}}$ | Input Voltage | 0 to 5.5 | V |
| $\mathrm{~V}_{\mathrm{O}}$ | Output Voltage | 0 to $\mathrm{V}_{\mathrm{CC}}$ | V |
| $\mathrm{T}_{\mathrm{op}}$ | Operating Temperature | -55 to 125 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{dt} / \mathrm{dv}$ | Input Rise and Fall Time (note 1$)(\mathrm{Vcc}=5.0 \pm 0.5 \mathrm{~V})$ | 0 to 20 | $\mathrm{~ns} / \mathrm{V}$ |

[^0]
## DC SPECIFICATIONS

| Symbol | Parameter | Test Condition |  | Value |  |  |  |  |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & \text { (V) } \end{aligned}$ |  | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  |  | -40 to $85^{\circ} \mathrm{C}$ |  | -55 to $125^{\circ} \mathrm{C}$ |  |  |
|  |  |  |  | Min. | Typ. | Max. | Min. | Max. | Min. | Max. |  |
| $\mathrm{V}_{\mathrm{IH}}$ | High Level Input Voltage | $\begin{array}{c\|} \hline 4.5 \text { to } \\ 5.5 \end{array}$ |  | 2 |  |  | 2 |  | 2 |  | V |
| $\mathrm{V}_{\text {IL }}$ | Low Level Input Voltage | $\begin{gathered} 4.5 \text { to } \\ 5.5 \end{gathered}$ |  |  |  | 0.8 |  | 0.8 |  | 0.8 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | High Level Output Voltage | 4.5 | $\mathrm{l}^{0}=-50 \mu \mathrm{~A}$ | 4.4 | 4.5 |  | 4.4 |  | 4.4 |  | V |
|  |  | 4.5 | $\mathrm{I}_{\mathrm{O}}=-8 \mathrm{~mA}$ | 3.94 |  |  | 3.8 |  | 3.7 |  |  |
| $\mathrm{V}_{\text {OL }}$ | Low Level Output Voltage | 4.5 | $\mathrm{I}_{\mathrm{O}}=50 \mu \mathrm{~A}$ |  | 0.0 | 0.1 |  | 0.1 |  | 0.1 | V |
|  |  | 4.5 | $\mathrm{I}_{\mathrm{O}}=8 \mathrm{~mA}$ |  |  | 0.36 |  | 0.44 |  | 0.55 |  |
| $\mathrm{I}_{\mathrm{OZ}}$ | High Impedance Output Leakage Current | 5.5 | $\begin{gathered} V_{I}=V_{I H} \text { or } V_{I L} \\ V_{O}=V_{C C} \text { or } G N D \end{gathered}$ |  |  | $\pm 0.25$ |  | $\pm 2.5$ |  | $\pm 2.5$ | $\mu \mathrm{A}$ |
| 1 | Input Leakage Current | $\begin{gathered} \hline 0 \text { to } \\ 5.5 \end{gathered}$ | $\mathrm{V}_{1}=5.5 \mathrm{~V}$ or GND |  |  | $\pm 0.1$ |  | $\pm 1$ |  | $\pm 1$ | $\mu \mathrm{A}$ |
| $I_{\text {cc }}$ | Quiescent Supply Current | 5.5 | $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND |  |  | 4 |  | 40 |  | 40 | $\mu \mathrm{A}$ |

AC ELECTRICAL CHARACTERISTICS (Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}$ )

| Symbol | Parameter | Test Condition |  |  | Value |  |  |  |  |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{V}_{\mathrm{Cc}}$ <br> (V) | $\begin{gathered} \mathrm{C}_{\mathrm{L}} \\ (\mathrm{pF}) \end{gathered}$ |  | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  |  | -40 to $85^{\circ} \mathrm{C}$ |  | -55 to $125^{\circ} \mathrm{C}$ |  |  |
|  |  |  |  |  | Min. | Typ. | Max. | Min. | Max. | Min. | Max. |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | Propagation Delay Time LE to Qn | $5.0^{(*)}$ | 15 |  |  | 5.0 | 8.5 | 1 | 9.5 | 1 | 9.5 | ns |
|  |  | $5.0{ }^{*}$ ) | 50 |  |  | 6.0 | 9.5 | 1 | 10.5 | 1 | 10.5 |  |
| $\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | Propagation Delay Time Dn to Qn | $5.0^{(*)}$ | 15 |  |  | 5.5 | 8.5 | 1 | 9.5 | 1 | 9.5 | ns |
|  |  | $5.0^{(*)}$ | 50 |  |  | 6.2 | 9.5 | 1 | 10.5 | 1 | 10.5 |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$ | Output Enable Time | $5.0^{(*)}$ | 15 |  |  | 5.2 | 9.5 | 1 | 10.5 | 1 | 10.5 | ns |
|  |  | $5.0^{(*)}$ | 50 |  |  | 6.5 | 10.5 | 1 | 11.5 | 1 | 11.5 |  |
| $\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$ | Output Disable Time | $5.0^{(*)}$ | 15 |  |  | 6 | 10.2 | 1 | 11.0 | 1 | 11.0 | ns |
|  |  | $5.0{ }^{(* *)}$ | 50 |  |  | 7 | 11.2 | 1 | 12.0 | 1 | 12.0 |  |
| $\mathrm{t}_{\text {w }}$ | Pulse Width (LE) $\mathrm{HIGH}$ | $5.0^{(*)}$ |  |  | 5 |  |  | 5 |  | 5 |  | ns |
| $\mathrm{t}_{\text {s }}$ | Setup Time Dn to LE HIGH or LOW | $5.0^{(*)}$ |  |  | 4 |  |  | 4 |  | 4 |  | ns |
| $t_{\text {h }}$ | Hold Time Dn to LE HIGH or LOW | $5.0{ }^{(*)}$ |  |  | 1 |  |  | 1 |  | 1 |  | ns |
| $\begin{aligned} & \mathrm{t}_{\mathrm{OSLH}} \\ & \mathrm{t}_{\mathrm{OSHL}} \end{aligned}$ | Output to Output Skew time (note 1) | $5.0{ }^{*}$ ) | 50 |  |  |  | 1.. |  | 1.5 |  | 1.5 | ns |

(*) Voltage range is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
(Note 1: Parameter guaranteed by design. $\mathrm{t}_{\mathrm{soLH}}=\left|\mathrm{t}_{\mathrm{pLHm}}-\mathrm{t}_{\mathrm{pLHn}}\right|, \mathrm{t}_{\mathrm{soHL}}=\left|\mathrm{t}_{\mathrm{pHLm}}-\mathrm{t}_{\mathrm{pHLn}}\right|$

## CAPACITIVE CHARACTERISTICS

| Symbol | Parameter | Test Condition |  | Value |  |  |  |  |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & V_{c c} \\ & (\mathrm{~V}) \end{aligned}$ |  | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  |  | -40 to $85^{\circ} \mathrm{C}$ |  | -55 to $125^{\circ} \mathrm{C}$ |  |  |
|  |  |  |  | Min. | Typ. | Max. | Min. | Max. | Min. | Max. |  |
| $\mathrm{C}_{\text {IN }}$ | Input Capacitance |  |  |  | 4 | 10 |  | 10 |  | 10 | pF |
| $\mathrm{C}_{\text {OUT }}$ | Output Capacitance |  |  |  | 6 |  |  |  |  |  | pF |
| $\mathrm{C}_{\text {PD }}$ | Power Dissipation Capacitance (note 1) | 5.0 | $\mathrm{f}_{\mathrm{IN}}=10 \mathrm{MHz}$ |  | 21 |  |  |  |  |  | pF |

1) $C_{P D}$ is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{C C(o p r)}=C_{P D} \times V_{C C} \times f_{I N}+I_{C C} / n$ (per Latch)

DYNAMIC SWITCHING CHARACTERISTICS

| Symbol | Parameter | Test Condition |  | Value |  |  |  |  |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & V_{c c} \\ & (V) \end{aligned}$ |  | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  |  | -40 to $85^{\circ} \mathrm{C}$ |  | -55 to $125^{\circ} \mathrm{C}$ |  |  |
|  |  |  |  | Min. | Typ. | Max. | Min. | Max. | Min. | Max. |  |
| $\mathrm{V}_{\text {OLP }}$ | Dynamic Low <br> Voltage Quiet <br> Output (note 1, 2) | 5.0 | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  | 0.6 | 0.9 |  |  |  |  | V |
| $\mathrm{V}_{\text {OLV }}$ |  |  |  | -0.9 | -0.6 |  |  |  |  |  |  |
| $\mathrm{V}_{\text {IHD }}$ | Dynamic High Voltage Input (note 1, 3) | 5.0 |  | 3.5 |  |  |  |  |  |  | V |
| $\mathrm{V}_{\text {ILD }}$ | Dynamic Low Voltage Input (note 1, 3) | 5.0 |  |  |  | 1.5 |  |  |  |  | V |

1) Worst case package.
2) Max number of outputs defined as ( $n$ ). Data inputs are driven 0 V to 5.0 V , ( $\mathrm{n}-1$ ) outputs switching and one output at GND.
3) Max number of data inputs ( $n$ ) switching. ( $n-1$ ) switching 0 V to 5.0 V . Inputs under test switching: 5.0 V to threshold ( $\mathrm{V}_{\text {ILD }}$ ), 0 V to threshold $\left(V_{\mathrm{IHD}}\right), f=1 \mathrm{MHz}$.

## TEST CIRCUIT



| TEST | SWITCH |
| :--- | :---: |
| $\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$ | Open |
| $\mathrm{t}_{\mathrm{PZL}}, \mathrm{t}_{\mathrm{PLZ}}$ | $\mathrm{V}_{\mathrm{CC}}$ |
| $\mathrm{t}_{\mathrm{PZH}}, \mathrm{t}_{\text {PHZ }}$ | GND |

$\mathrm{C}_{\mathrm{L}}=15 / 50 \mathrm{pF}$ or equivalent (includes jig and probe capacitance)
$R_{\mathrm{L}}=\mathrm{R} 1=1 \mathrm{~K} \Omega$ or equivalent
$\mathrm{R}_{\mathrm{T}}=\mathrm{Z}_{\mathrm{OUT}}$ of pulse generator (typically $50 \Omega$ )
WAVEFORM 1 : LE TO Qn PROPAGATION DELAYS, LE MINIMUM PULSE WIDTH, Dn TO LE SETUP AND HOLD TIMES ( $\mathrm{f}=1 \mathrm{MHz} ; 50 \%$ duty cycle)


WAVEFORM 2: OUTPUT ENABLE AND DISABLE TIME ( $f=1 \mathrm{MHz} ; 50 \%$ duty cycle)


WAVEFORM 3 : PROPAGATION DELAY TIME (f=1MHz; 50\% duty cycle)


| TSSOP48 MECHANICAL DATA |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DIM. | mm. |  |  | inch |  |  |
|  | MIN. | TYP | MAX. | MIN. | TYP. | MAX. |
| A |  |  | 1.1 |  |  | 0.043 |
| A1 | 0.05 |  | 0.15 | 0.002 |  | 0.006 |
| A2 |  | 0.9 |  |  | 0.035 |  |
| b | 0.17 |  | 0.27 | 0.0067 |  | 0.011 |
| c | 0.09 |  | 0.20 | 0.0035 |  | 0.0079 |
| D | 12.4 |  | 12.6 | 0.408 |  | 0.496 |
| E | 7.95 |  | 8.25 | 0.313 |  | 0.325 |
| E1 | 6.0 |  | 6.2 | 0.236 |  | 0.244 |
| e |  | 0.5 BSC |  |  | 0.0197 BSC |  |
| K | $0^{\circ}$ |  | $8^{\circ}$ | $0^{\circ}$ |  | $8^{\circ}$ |
| L | 0.50 |  | 0.75 | 0.020 |  | 0.030 |



7065588A

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
© The ST logo is a registered trademark of STMicroelectronics
© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.
© http://www.st.com


[^0]:    1) $\mathrm{V}_{\text {IN }}$ from 0.8 V to 2.0 V
