ST380CPbF Series
Vishay High Power Products

Phase Control Thyristors (Hockey PUK Version), 960 A

TO-200AB (E-PUK)

PRODUCT SUMMARY	
$\mathrm{I}_{\mathrm{T}(\mathrm{AV})}$	960 A

FEATURES

- Center amplifying gate
- Metal case with ceramic insulator
- International standard case TO-200AB (E-PUK)
- Low profile hockey PUK to increase current-carrying capability
- Lead (Pb)-free
- Designed and qualified for industrial level

TYPICAL APPLICATIONS

- DC motor controls
- Controlled DC power supplies
- AC controllers

MAJOR RATINGS AND CHARACTERISTICS			
PARAMETER	TEST CONDITIONS	VALUES	UNITS
$\mathrm{I}_{\mathrm{T}(\mathrm{AV})}$		960	A
	$\mathrm{T}_{\text {hs }}$	55	${ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {(RMS) }}$		1900	A
	$\mathrm{T}_{\text {hs }}$	25	${ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {TSM }}$	50 Hz	15000	A
	60 Hz	15700	
$1^{2} \mathrm{t}$	50 Hz	1130	kA² ${ }^{\text {s }}$
	60 Hz	1030	
$\mathrm{V}_{\text {DRM }} / \mathrm{V}_{\text {RRM }}$		400/600	V
t_{q}	Typical	100	$\mu \mathrm{s}$
T_{J}		- 40 to 125	${ }^{\circ} \mathrm{C}$

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS

TYPE NUMBER	VOLTAGE CODE	V $_{\text {DRM }} / \mathbf{V}_{\text {RRM }}$, MAXIMUM REPETITIVE PEAK AND OFF-STATE VOLTAGE V	$V_{\text {RSM, }}$, MAXIMUM NON-REPETITIVE PEAK VOLTAGE V	IDRM $^{\text {/IRM }}$ MAXIMUM AT $T_{J}=T_{J}$ MAXIMUM mA
ST380C..C	04	400	500	50
	06	600	700	

ABSOLUTE MAXIMUM RATI						
PARAMETER	SYMBOL	TEST CONDITIONS			VALUES	UNITS
Maximum average on-state current	$\mathrm{I}_{\text {T(AV) }}$	180° conduction, half sine wave double side (single side) cooled			960 (440)	A
at heatsink temperature					55 (75)	${ }^{\circ} \mathrm{C}$
Maximum RMS on-state current	$\mathrm{I}_{\text {T(RMS) }}$	DC at $25^{\circ} \mathrm{C}$ heatsink temperature double side cooled			1900	A
Maximum peak, one-cycle non-repetitive surge current	$I_{\text {TSM }}$	$\mathrm{t}=10 \mathrm{~ms}$	No voltage	Sinusoidal half wave, initial $T_{J}=T_{J}$ maximum	15000	
		$\mathrm{t}=8.3 \mathrm{~ms}$	reapplied		15700	
		$\mathrm{t}=10 \mathrm{~ms}$	$100 \% \mathrm{~V}_{\text {RRM }}$		12600	
		$\mathrm{t}=8.3 \mathrm{~ms}$	reapplied		13200	
Maximum I^{2} t for fusing	$1^{2} \mathrm{t}$	$\mathrm{t}=10 \mathrm{~ms}$	No voltage		1130	$k A^{2} \mathrm{~s}$
		$\mathrm{t}=8.3 \mathrm{~ms}$	reapplied		1030	
		$\mathrm{t}=10 \mathrm{~ms}$	$100 \% \mathrm{~V}_{\text {RRM }}$		800	
		$\mathrm{t}=8.3 \mathrm{~ms}$	reapplied		725	
Maximum $\mathrm{I}^{2} \sqrt{ }$ t for fusing	$1^{2} \sqrt{ } \mathrm{t}$	$\mathrm{t}=0.1$ to 10 ms , no voltage reapplied			11300	$\mathrm{kA}^{2} \sqrt{ } \mathrm{l}$
Low level value of threshold voltage	$\mathrm{V}_{\text {T(TO) } 1}$	($\left.16.7 \% \mathrm{x} \pi \times \mathrm{I}_{\mathrm{T}(\mathrm{AV})}<\mathrm{I}<\pi \times \mathrm{I}_{\mathrm{T}(\mathrm{AV})}\right)$, $\mathrm{T}_{J}=\mathrm{T}_{J}$ maximum			0.85	V
High level value of threshold voltage	$\mathrm{V}_{\text {(TO) } 2}$	$\left(1>\pi \times \mathrm{I}_{\text {(}}\right.$), $\mathrm{T}_{J}=\mathrm{T}_{J}$ maxi	mum	0.88	
Low level value of on-state slope resistance	$\mathrm{r}_{\text {t1 }}$	($16.7 \% \times \pi \times \mathrm{I}_{\mathrm{T}(\mathrm{AV})}<\mathrm{I}<\pi \times \mathrm{I}_{\mathrm{T}(\mathrm{AV})}$), $\mathrm{T}_{J}=\mathrm{T}_{J}$ maximum			0.25	$\mathrm{m} \Omega$
High level value of on-state slope resistance	$\mathrm{r}_{\mathrm{t} 2}$	($\left.1>\pi \times \mathrm{I}_{\mathrm{T}(\mathrm{AV},}\right), \mathrm{T}_{J}=\mathrm{T}_{J}$ maximum			0.24	
Maximum on-state voltage	$\mathrm{V}_{\text {TM }}$	$\mathrm{l}_{\mathrm{pk}}=3000$	$\mathrm{T}_{J}=\mathrm{T}_{J}$ maxim	$\mathrm{m}, \mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}$ sine pulse	1.60	V
Maximum holding current	I_{H}	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, anode supply 12 V resistive load			600	mA
Typical latching current	I_{L}				1000	

SWITCHING				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum non-repetitive rate of rise of turned-on current	dl/dt	Gate drive $20 \mathrm{~V}, 20 \Omega, \mathrm{t}_{\mathrm{r}} \leq 1 \mu \mathrm{~s}$ $\mathrm{T}_{J}=\mathrm{T}_{J}$ maximum, anode voltage $\leq 80 \% \mathrm{~V}_{\mathrm{DRM}}$	1000	A/ $/ \mathrm{s}$
Typical delay time	$\mathrm{t}_{\text {d }}$	$\text { Gate current } 1 \mathrm{~A}, \mathrm{dl}_{g} / \mathrm{dt}=1 \mathrm{~A} / \mathrm{hs}$ $\mathrm{V}_{\mathrm{d}}=0.67 \% \mathrm{~V}_{\mathrm{DRM}}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	1.0	
Typical turn-off time	t_{q}	$\mathrm{I}_{\mathrm{TM}}=550 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{J}}$ maximum, $\mathrm{d} / / \mathrm{dt}=40 \mathrm{~A} / \mu \mathrm{s}$, $\mathrm{V}_{\mathrm{R}}=50 \mathrm{~V}, \mathrm{dV} / \mathrm{dt}=20 \mathrm{~V} / \mu \mathrm{s}$, gate $0 \mathrm{~V} 100 \Omega, \mathrm{t}_{\mathrm{p}}=500 \mu \mathrm{~s}$	100	

BLOCKING	SYMBOL	TEST CONDITIONS	VALUES	UNITS
PARAMETER	$\mathrm{dV} / \mathrm{dt}$	$\mathrm{T}_{J}=\mathrm{T}_{J}$ maximum linear to 80% rated $\mathrm{V}_{\text {DRM }}$	500	$\mathrm{~V} / \mathrm{Ms}$
Maximum critical rate of rise of off-state voltage	$\mathrm{I}_{\mathrm{RRM}}$ Maximum peak reverse and off-state leakage current $\mathrm{T}_{J}=\mathrm{T}_{J}$ maximum, rated $\mathrm{V}_{\text {DRM }} / \mathrm{V}_{\text {RRM }}$ applied	50	mA	

TRIGGERING						
PARAMETER	SYMBOL	TEST CONDITIONS		VALUES		UNITS
				TYP.	MAX.	
Maximum peak gate power	P_{GM}	$\mathrm{T}_{J}=\mathrm{T}_{\mathrm{J}}$ maximum, $\mathrm{t}_{\mathrm{p}} \leq 5 \mathrm{~ms}$		10.0		W
Maximum average gate power	$\mathrm{P}_{\mathrm{G}(\mathrm{AV})}$	$\mathrm{T}_{J}=\mathrm{T}_{J}$ maximum, $\mathrm{f}=50 \mathrm{~Hz}, \mathrm{~d} \%=50$		2.0		
Maximum peak positive gate current	I_{GM}	$\mathrm{T}_{J}=\mathrm{T}_{\mathrm{J}}$ maximum, $\mathrm{t}_{\mathrm{p}} \leq 5 \mathrm{~ms}$		3.0		A
Maximum peak positive gate voltage	$+\mathrm{V}_{\mathrm{GM}}$	$\mathrm{T}_{J}=\mathrm{T}_{\mathrm{J}}$ maximum, $\mathrm{t}_{\mathrm{p}} \leq 5 \mathrm{~ms}$		20		V
Maximum peak negative gate voltage	- V_{GM}			5.0		
DC gate current required to trigger	I_{GT}	$\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$	Maximum required gate trigger/ current/voltage are the lowest value which will trigger all units 12 V anode to cathode applied	200	-	mA
		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		100	200	
		$\mathrm{T}_{J}=125^{\circ} \mathrm{C}$		50	-	
DC gate voltage required to trigger	$V_{G T}$	$\mathrm{T}_{J}=-40^{\circ} \mathrm{C}$		2.5	-	V
		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		1.8	3.0	
		$\mathrm{T}_{J}=125^{\circ} \mathrm{C}$		1.1	-	
DC gate current not to trigger	$I_{\text {GD }}$	$\mathrm{T}_{J}=\mathrm{T}_{J}$ maximum	Maximum gate current/voltage not to trigger is the maximum value which will not trigger any unit with rated $\mathrm{V}_{\text {DRM }}$ anode to cathode applied	10		mA
DC gate voltage not to trigger	V_{GD}			0.25		V

THERMAL AND MECHANICAL SPECIFICATIONS

PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum operating junction temperature range	T_{J}		- 40 to 125	${ }^{\circ} \mathrm{C}$
Maximum storage temperature range	$\mathrm{T}_{\text {Stg }}$		- 40 to 150	
Maximum thermal resistance, junction to heatsink	$\mathrm{R}_{\text {thJ-hs }}$	DC operation single side cooled	0.09	K/W
		DC operation double side cooled	0.04	
Maximum thermal resistance, case to heatsink	$\mathrm{R}_{\text {thC }} \mathrm{hs}$	DC operation single side cooled	0.02	
		DC operation double side cooled	0.01	
Mounting force, $\pm 10 \%$			$\begin{gathered} 9800 \\ (1000) \end{gathered}$	$\begin{gathered} \mathrm{N} \\ (\mathrm{~kg}) \end{gathered}$
Approximate weight			83	g
Case style		See dimensions - link at the end of datasheet	TO-200AB (E-PUK)	

$\Delta \mathbf{R}_{\text {thJ-hs }}$ CONDUCTION

CONDUCTION ANGLE	SINUSOIDAL CONDUCTION		RECTANGULAR CONDUCTION		TEST CONDITIONS	UNITS
	SINGLE SIDE	DOUBLE SIDE	SINGLE SIDE	DOUBLE SIDE		
180°	0.010	0.011	0.007	0.007	$\mathrm{T}_{J}=\mathrm{T}_{J}$ maximum	K/W
120°	0.012	0.012	0.012	0.013		
90°	0.015	0.015	0.016	0.017		
60°	0.022	0.022	0.023	0.023		
30°	0.036	0.036	0.036	0.037		

Note

- The table above shows the increment of thermal resistance $\mathrm{R}_{\mathrm{th} J-\mathrm{hs}}$ when devices operate at different conduction angles than DC

Fig. 1 - Current Ratings Characteristics

Fig. 2 - Current Ratings Characteristics

Fig. 3 - Current Ratings Characteristics

Fig. 4 - Current Ratings Characteristics

Fig. 5-On-State Power Loss Characteristics

Fig. 6 - On-State Power Loss Characteristics

ST380CPbF Series

Phase Control Thyristors Vishay High Power Products (Hockey PUK Version), 960 A

Fig. 7 - Maximum Non-Repetitive Surge Current Single and Double Side Cooled

Fig. 8 - Maximum Non-Repetitive Surge Current Single and Double Side Cooled

Fig. 9 - On-State Voltage Drop Characteristics

Fig. 10 - Thermal Impedance $Z_{\text {th } J \text {-hs }}$ Characteristics

Vishay High Power Products Phase Control Thyristors (Hockey PUK Version), 960 A

Fig. 11 - Gate Characteristics

ORDERING INFORMATION TABLE

1 - Thyristor
2 - Essential part number
3 - $0=$ Converter grade
4 - C = Ceramic PUK
5 - Voltage code $\times 100=\mathrm{V}_{\text {RRM }}$ (see Voltage Ratings table)
6 - C = PUK case TO-200AB (E-PUK)
$7 \quad-\quad 0=$ Eyelet terminals (gate and auxiliary cathode unsoldered leads)
1 = Fast-on terminals (gate and auxiliary cathode unsoldered leads)
2 = Eyelet terminals (gate and auxiliary cathode soldered leads)
3 = Fast-on terminals (gate and auxiliary cathode soldered leads)
8 - Critical dV/dt: \bullet None $=500 \mathrm{~V} / \mu \mathrm{s}$ (standard selection)

- $\mathrm{L}=1000 \mathrm{~V} / \mathrm{\mu s}$ (special selection)

9 - Lead (Pb)-free

LINKS TO RELATED DOCUMENTS	
Dimensions	http://www.vishay.com/doc?95075

TO-200AB (E-PUK)

DIMENSIONS in millimeters (inches)

Anode to gate
Creepage distance: 11.18 (0.44) minimum
Strike distance: 7.62 (0.30) minimum

Quote between upper and lower pole pieces has to be considered after application of mounting force (see thermal and mechanical specification)

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

