

STRUCTURE : Silicon Monolithic Integrated Circuit

PRODUCT NAME : Synchronous rectification with built-in FET type DC/DC converter IC

MODEL NAME : B D 8 6 4 3 F V

FEATURES : •Synchronous rectification with built-in FET type DC/DC converter

•Output current 3A

• Reference voltage accuracy FB $0.8V \pm 1\%$

• Switching frequency 100kHz \sim 600kHz

Over current protection circuit

Thermal shutdown

Input low voltage detection UVLO

• Soft start / Start delay circuit

Programmable OFFLATCH time

©ABSOLUTE MAXIMUM RATING (Ta=25°C)

Parameter	Symbol	Limits	Unit
Input supply voltage	V_{IN}	20	V
BOOT terminal voltage	V_{BOOT}	28	V
EN terminal voltage	V _{EN}	GND-0.3 ~ V _{IN} +0.3	V
Input terminal voltage	V _{INP} *1	GND-0.3 ~ 7	V
SW terminal voltage	V _{sw}	GND-0.3 ~ V _{IN} +0.3	V
Output switch current	I _{OUT}	3.5* ²	Α
Power dissipation	Pd	2.06*3	W
Operating temperature	Topr	−20 ~ 85	°C
Storage temperature	Tstg	−55 ~ 150	°C
Maximum Junction Temperature	Tjmax	150	°C

^{*1} V_{INP} Application terminal: SS/DELAY, FB, FC, RT, PSET

Operating at higher than Ta=25°C, 9.5mW shall be reduced per 1

Operation condition

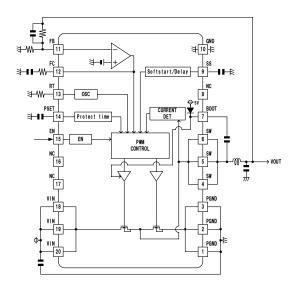
Parameter	Symbol	MIN	TYP	MAX	Unit
Input supply voltage	V_{IN}	4.5	-	18.0	V
Output switch current	\mathbf{I}_{OUT}	_	-	3.0	Α

This product is not designed for protection against radioactive rays.

^{* 2} Do not however exceed Pd.

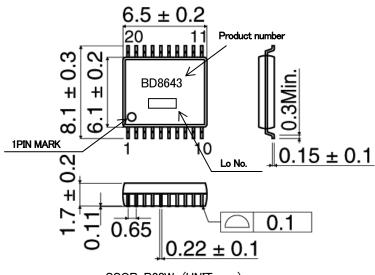
^{*3 (70}mm × 70mm, thickness 1.6mm, and four layer glass epoxy substrates) When mounting substrate and the package back exposure part are connected with solder.

©Electrical characteristic


(Unless otherwise noted Ta=25°C, VIN=12V, V_{EN} = 3V)

Dawaratan	Comple ed	Specification value			UNIT	0	
Parameter	Symbol	MIN	TYP	MAX	UNIT	Condition	
VIN supply current (operating)	I _{Q active}	-	1.5	2.5	mA	V _{FB} = 0.75V	
VIN supply current (standby)	$I_{Q \text{ stbv}}$	ı	0.8	1.2	mA	V _{EN} = 0V	
Reference voltage	V_{FB}	0.792	0.8	0.808	>	FB-FC Short	
Oscillation frequency	f _{osc}	270	300	330	kHz	$R_{RT} = 56k\Omega$	
High side FET ON resistance	R _{HFET}	-	110	160	mΩ	I _{SW} = -1A	
Low side FET ON resistance	R _{LFET}	_	110	160	mΩ	I _{SW} = 1A	
UVLO voltage	V _{UVLO}	3.8	4.0	4.2	V	VIN Sweep	
SW leak current	I _{LSW}	-	0	5	μΑ	V _{EN} = 0V	
EN terminal H threshold voltage	V_{ENH}	1.6	ı	-	٧		
EN terminal L threshold voltage	V _{ENL}	-	-	0.4	٧		
SS/DELAY terminal source current	I _{SSSO}	2.8	4	5.2	μΑ	V _{SS} = 1V	
SS/DELAY - FB Offset voltage	V _{SSFBOST}	450	600	750	mV	V _{SS} = 1V	
PSET terminal source current	I _{PSET}	3	5	7	μΑ	V _{PSET} = 2V	
PSET terminal threshold voltage	V _{PSET}	0.8	1.0	1.2	V		

[●]Current capability should not exceed Pd.


©BLOCK DIAGRAM

©PIN ASSIGNMENT

No.	Symbol	Description	No.	Symbol	Description
1	PGND	Power GND terminal	11	FB	Feedback terminal
2	PGND	Power GND terminal	12	FC	Phase amends terminal
3	PGND	Power GND terminal	13	RT	Frequency adjustment resistance connection terminal
4	SW	Switching output terminal	14	PSET	Adjust OFF LATCH time terminal
5	SW	Switching output terminal	15	EN	Enable input
6	SW	Switching output terminal	16	NC	-
7	воот	Boot strap terminal	17	NC	-
8	NC	-	18	VIN	Power supply input terminal
9	SS/DELAY	Soft start adjustment capacity connection terminal	19	VIN	Power supply input terminal
10	GND	Signal GND terminal	20	VIN	Power supply input terminal

OPACKAGE OUTLINE

SSOP-B20W (UNIT:mm)

ONOTE ON USE

1. About the absolute maximum rating

Attention is brushed off enough to the quality control, it is likely to destroy when the absolute maximum rating such as impressed voltages (VCC_IN,DCIN) and ranges (Topr) of the operating temperature as it is exceeded, the mode of breakings of the short or the opening, etc. cannot be specified, and examine it in this IC to give physical measures for safety such as fuses when a special mode that exceeds the absolute maximum rating is assumed.

2. GND pin voltage

GND terminal should be connected the lowest voltage, under all conditions. And all terminals except SW should be under GND terminal voltage under all conditions including transient situations. If a terminal exists under GND, it should be inserting a bypass route.

3. Power dissipation

If IC is used on condition that the power loss is over the power dissipation, the reliability will become worse by heat up, such as reduced output current capability. Also, be sure to use this IC within a power dissipation range allowing enough of margin.

4. Input supply voltage

Input supply pattern layout should be as short as possible.

5. About the short and the miss-installation between terminals

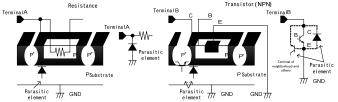
Note the direction and the miss-registration of IC enough when you install it in the set substrate. IC might destroy it as well as reversely connecting the power supply connector when installing it by mistake. Moreover, there is fear of destruction when the foreign body enters between terminals, the terminal, the power supply, and grandeur and it is short-circuited.

6. About operation in strong electromagnetic field

In use in strong electromagnetic field, note that there is a possibility of malfunctioning.

7. About the inspection by the set substrate

It is likely to suffer stress to IC and discharge electricity every one process when you connect the capacitor with the pin with low impedance when inspecting it in the set substrate. Moreover, detach it after connecting after the power supply is turned off without fail when detaching it to G in the inspection process, inspecting, and turning off the power supply. n addition, be give the earth to the assembly process as a static electricity measures, and careful enough when it transports and you preserve it.


8. About each input terminal

This IC is a monolithic IC which has a P^+ isolations and P substrate to isolate elements each other.

This P layer and an N layer in each element form a PN junction to construct various parasitic elements.

For instance, the potential difference operates in resistance as shown in the figure below when resistance and the transistor connect it with the terminal and the playground (GND) \times (terminal B) joint of PN operates as a parasitic diode in playground (GND) \times (terminal A) transistor (NPN). In addition, the NPN transistor of parasitism works with N layer of the element of the above-mentioned parasitic diode and the neighborhood and others in transistor (NPN). A parasitic element in IC composition is inevitably formed because of the potential relation.

A parasitic element can operate, the interference with the circuit operation be caused, it malfunction, and, consequently, it cause destruction. Therefore, do not do the usage that a parasitic element operates as a voltage that is lower than the playground (GND;P substrate) is impressed to the input terminal enough. Moreover, do not impress the voltage to the input terminal when you do not impress the power—supply voltage to IC. Give each input terminal to me the voltage below the power—supply voltage or in the guarantee value of an electric characteristic when you similarly impress the power—supply voltage.

Example of IC of simple structure

9. Earth wiring pattern

If small signal GND and large current GND exist, disperse their pattern. In addition, for voltage change by pattern wiring impedance and large current not to change voltage of small signal GND, each ground terminal of IC must be connected at the one point on the set circuit board. As for GND of external parts, it is similar to the above-mentioned.

10. SW termina

A counter-electromotive force may generate a negative potential at the SW terminal during connection to the particular application. Therefore, it should be inserting a bypass route between SW to GND.

11. About each output terminal

We recommend to put Diode for protection purpose in case of output pin connected with large load of impedance or reserve current occurred at initial and output off.

12. Thermal Shut Down Circuit

A temperature control is built in the IC to prevent the damage due to overheat. Therefore, the outputs are turned off when the thermal circuit works.

13. Over Output Current Protection

SW Output terminal has over current protection circuit of 5A, with prevents IC from being damage by short circuit at over current. However, It is recommend not to use that continuously operates the protection circuit (For instance, always the load that greatly exceeds the output current ability is connected or the output is short-circuited, etc.) in these protection circuits by an effective one to the destruction prevention due to broken accident.

Notes

No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM CO.,LTD.

The content specified herein is subject to change for improvement without notice.

The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request.

Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage.

The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.

The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).

The Products are not designed to be radiation tolerant.

While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.

Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.

If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

Thank you for your accessing to ROHM product informations.

More detail product informations and catalogs are available, please contact your nearest sales office.

ROHM Customer Support System

THE AMERICAS / EUROPE / ASIA / JAPAN

www.rohm.com

Contact us : webmaster@rohm.co.jp

Copyright © 2009 ROHM CO.,LTD.

ROHM Co., Ltd. 21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan

TEL:+81-75-311-2121 FAX:+81-75-315-0172

