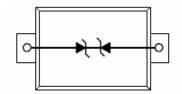
-WILLAS -

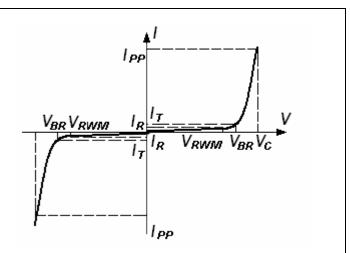
SESD3Z5C


Γ

Transient Voltage Suppressors for ESD Protection

General Description	Features				
The SESD3Z5C is designed to protect voltage	Small Body Outline Dimensions				
sensitive components from ESD and transient voltage	 Low Body Height 				
events. Excellent clamping capability, low leakage, and	• Peak Power up to 350 Watts @ 8 x 20 _µs Pulse				
fast response time, make these parts ideal for ESD	Low Leakage current				
protection on designs where board space is at a	 Response Time is Typically < 1 ns 				
premium.	 ESD Rating of Class 3 (> 16 kV) per Human 				
	Body Model				
Applications	 RoHS product for packing code suffix "G" 				
Cellular phones	Halogen free product for packing code suffix "H"				
Portable devices	Complies with the following standards				
Digital cameras	IEC61000-4-2				
Power supplies	Level 4 15 kV (air discharge)				
	8 kV(contact discharge)				
	MIL STD 883E - Method 3015-7 Class 3				
Marking: CC	25 kV HBM (Human Body Model)				
Functional diagram					

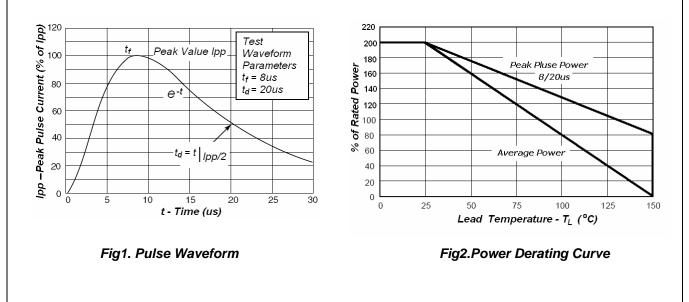
Functional diagram


SOD-323

Symbol	Parameter	Value	Units
P _{PK}	Peak Pulse Power (t _p = 8/20µs)	350	W
TL	Maximum lead temperature for soldering during 10s	260	°C
T _{stg}	Storage Temperature Range	-55 to +155	°C
T _{op}	Operating Temperature Range	-40 to +125	°C
TJ	Maximum junction temperature	150	°C

-WILLAS

Electrical Parameter

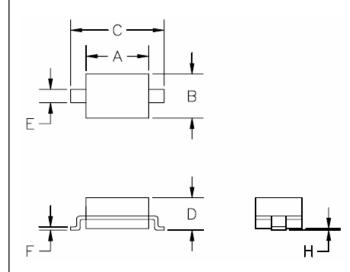

Symbol	Parameter
I _{PP}	Maximum Reverse Peak Pulse Current
Vc	Clamping Voltage @ IPP
V _{RWM}	Working Peak Reverse Voltage
I _R	Maximum Reverse Leakage Current @ V _{RWM}
Ι _Τ	Test Current
V_{BR}	Breakdown Voltage @ I _T

Electrical Characteristics Ratings at 25°C ambient temperature unless otherwise specified.							
Part Numbers	V _{BR}						С
	Min.	Тур.	Max.	Ι _Τ	V _{RWM}	I _R	Typ. (Note1)
	V	V	V	mA	V	μΑ	pF
SESD3Z5C	5.4	6.7	7.8	1	5.0	1	24

1. Capacitance is measured at f=1MHz, V_R =0V, T_A =25 °C.

Typical Characteristics

WILLAS


Application Note

Electrostatic discharge (ESD) is a major cause of failure in electronic systems. Transient Voltage Suppressors (TVS) are an ideal choice for ESD protection. They are capable of clamping the incoming transient to a low enough level such that damage to the protected semiconductor is prevented.

Surface mount TVS offers the best choice for minimal lead inductance. They serve as parallel protection elements, connected between the signal lines to ground. As the transient rises above the operating voltage of the device, the TVS becomes a low impedance path diverting the transient current to ground. The SESD3Z5C is the ideal board evel protection of ESD sensitive semiconductor components.

The tiny SOD-323 package allows design flexibility in the design of high density boards where the space saving is at a premium. This enables to shorten the routing and contributes to hardening against ESD.

SOD-323 Mechanical Data

Dimensions					
Dim	Inches		Mil		
	Min	Max	Min	Max	
Α	0.060	0.071	1.5	1.8	
В	0.045	0.054	1.2	1.4	
С	0.060	0.107	2.3	2.7	
D	-	0.043	-	1.1	
E	0.012	0.016	0.3	0.4	
F	0.004	0.010	0.10	0.25	
Н	-	0.004	-	0.10	

CONTROLLILNG DIMENSION: MILLIMETERS