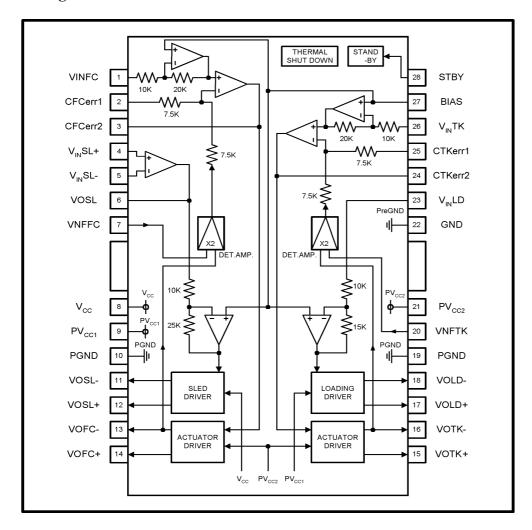
4-Channel BTL Motor Driver for CD-ROM

Features

- W43023 is a 4 channel driver for optical disc motor driver. Dual channel current feedback type drivers are built in, in addition to dual channel motor driver.
- Separating Vcc into Pre-power of sled motor, Power of loading motor and Power of actuator, can make batter power efficiency, by low supply voltage drive.
- Stand-by mode built in.
- Thermal shutdown circuit on chip.


Description

The W43023 is a 4-channel BTL driver IC for driving the motors and actuators in products such as CD-ROM/DVD-ROM/DVD-Player drives. Two of the channels use current feedback to minimize the current phase shift caused by the influence of load inductance.

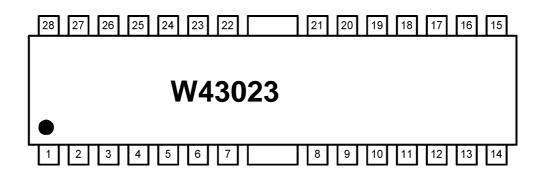
Applications

CD-ROM drives, DVD drives, DVD-ROM drives.

Block Diagram

^{*} All specs and applications shown above subject to change without prior notice.

4-Channel BTL Motor Driver for CD-ROM


Pin Descriptions

Pin No.	Pin name	Function			
1	VINFC	Focus drive input			
2	CFCerr1	For connection of capacitor for the error amp filter			
3	CFCerr2	For connection of capacitor for the error amp filter			
4	VINSL +	Op-amp input (+) for the sled driver			
5	VINSL -	Op-amp input (-) for the sled driver			
6	VOSL	Op-amp output for the sled driver			
7	VNFFC	Focus driver feedback pin			
8	Vcc	Vcc			
9	PVcc1	Power Vcc for sled driver block			
10	PGND	Ground for Sled driver block			
11	VOSL -	sled driver output (-)			
12	VOSL +	sled driver output (+)			
13	VOFC -	Focus driver output (-)			
14	VOFC +	Focus driver output (+)			
15	VOTK +	Tracking driver output (+)			
16	VOTK -	Tracking driver output (-)			
17	VOLD +	Loading driver output (+)			
18	VOLD -	Loading driver output (-)			
19	PGND	Ground for Actuator driver block			
20	VNFTK	Tracking driver feedback pin			
21	PVcc2	Power Vcc for Actuator driver block			
22	GND	Ground			
23	VINTK	Loading driver input			
24	CTKerr2	For connection of capacitor for the error amp filter			
25	CTKerr1	For connection of capacitor for the error amp filter			
26	VINTK	Tracking driver input			
27	BIAS	Bias input			
28	MUTE	Mute control			

Notes: The indicated polarities for the output pins are for when all inputs are (+).

The output H bridge supply pins are PVcc1 for the loading channel, PVcc2 for the focus, tracking channels, and Vcc for the pre-block and sled channel. Always ensure that Vcc≥PVcc1,2.

PinOut

^{*} All specs and applications shown above subject to change without prior notice.

4-Channel BTL Motor Driver for CD-ROM

Absolute maximum ratings ($Ta = 25^{\circ}C$)

Parameter	Symbol	Limits	unit
Power supply voltage	V _{CC} \ PVcc1,2	13.5	V
Power dissipation	P_d	1.7*	W
Operating temperature	T_{opr}	-35~+85	°C
Storage temperature	T_{stg}	-55~+150	°C

^{*} Reduce by 13.6 mW for each increase in T_a of 1°C over 25°C. When mounted on a 70mm × 70mm × 1.6 mm glass epoxy board.

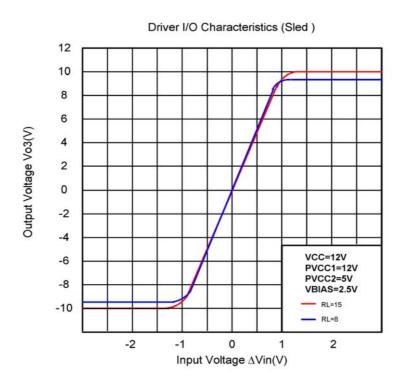
Recommended operating conditions (Ta = 25°C)

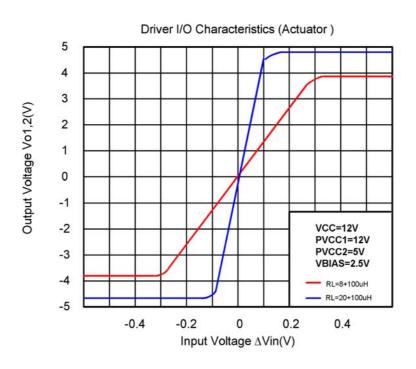
Parameter	Symbol	Limits	unit
Power supply voltage	Vcc	4.5~13.2	V
	PVcc1	4.5~Vcc	V
	PVcc2	4.5~Vcc	V

Electrical characteristics

(unless otherwise noted, Ta = 25°C, V_{CC} = PV_{CC1} = 12V, PV_{CC2} = 5V, V_{BIAS} = 2.5V, R_{L1} = R_{L2} = 8 Ω , R_{L3} = R_{L4} = 15 Ω)

	ee ee			DIME	,	,,	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	
Quiescent current	I_{CC}	-	18	27	mA		
Stand-by quiescent current	I_{ST}	-	-	0.5	mA		
Voltage for Stand-by ON	V _{STON}	0	-	0.5	V		
Voltage for Stand-by OFF	V_{STOFF}	2.0	-	1	V		
<actuator driver=""></actuator>							
Output offset current	$I_{O1,2}$	-6	-	6	mA		
Maximum output amplitude	$V_{O1,2}$	3.6	4.0	-	V	$V_{IN} = V_{BIAS} \pm 1.5V$	
Trans conductance	Gm	1.3	1.5	1.7	A/V	$V_{IN} = V_{BIAS} \pm 0.2V$	
<sled driver="" motor="" op-amp="" pre=""></sled>							
Common mode input range	V_{ICM}	-0.3	-	11.0	V	V _{BIAS} =6 V	
	V_{ICM}	-0.3	ı	4.0	V	Vcc=PVcc1=5V	
Input bias current	I_{BOP}	-	30	300	nA		
Low level output voltage	V_{OLOP}	-	0.1	0.3	V		
Output source current	I_{SO}	0.3	0.5	ı	mA		
Output sink current	I_{SI}	1	-	ı	mA		
<sled driver="" motor=""></sled>							
Output offset voltage	V_{OFFSL}	-100	0	100	mV		
Maximum output voltage	V_{O3}	7.5	9.0	-	V	$V_{IN} = V_{BIAS} \pm 1.5V$	
Closed loop voltage gain	$G_{ m VSL}$	18.0	20.0	22.0	dB	$V_{IN} = V_{BIAS} \pm 0.2V$	
<loading driver="" motor=""></loading>							
Output offset voltage	V_{OFFLD}	-50	0	50	mV		
Maximum output voltage	V_{O4-1}	7.5	9.0	ı	V	$V_{IN} = V_{BIAS} \pm 1.5V$	
Maximum output voltage	V_{O4-2}	3.6	4.0	ı	V	$V_{IN} = V_{BIAS} \pm 1.5V$	
						Vcc=PVcc1=5V	
Closed loop voltage gain	G_{VLD}	13.5	15.5	17.5	dB	$V_{IN} = BIAS \pm 0.2V$	
Gain error by polarity	ΔG_{VLD}	0	1	2	dB	$V_{IN} = BIAS \pm 0.2V$	

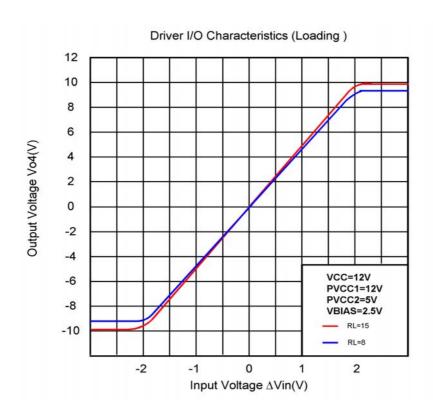

^{*}This product is not designed for protection against radioactive rays.

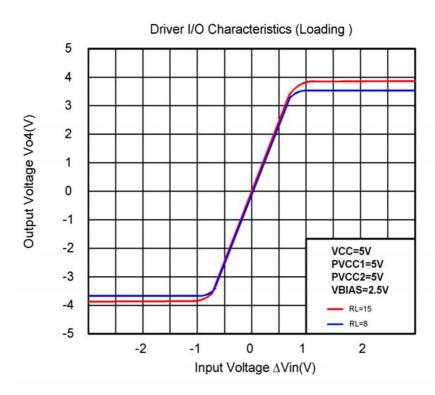

^{*} All specs and applications shown above subject to change without prior notice.

WAFER WIN

4-Channel BTL Motor Driver for CD-ROM

Typical Curve

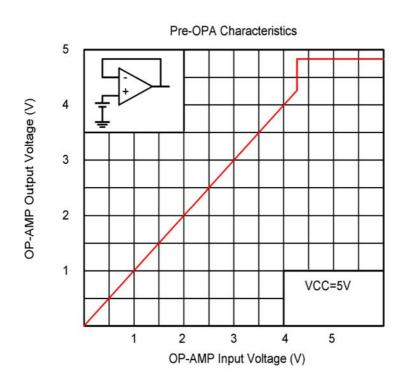


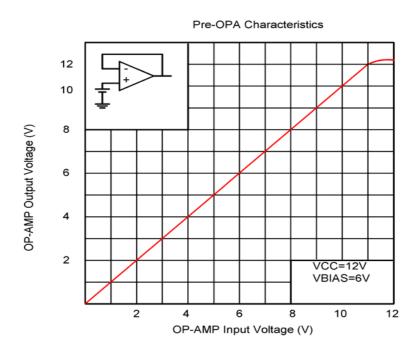


^{*} All specs and applications shown above subject to change without prior notice.

WAFER WIN

4-Channel BTL Motor Driver for CD-ROM

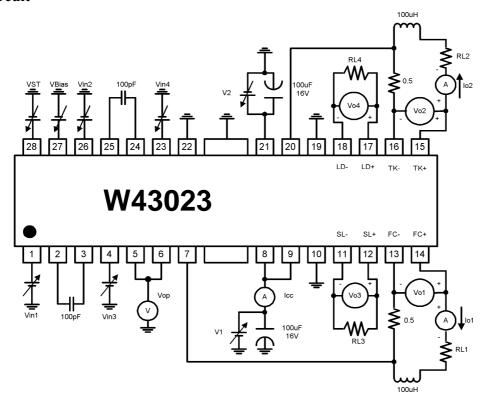


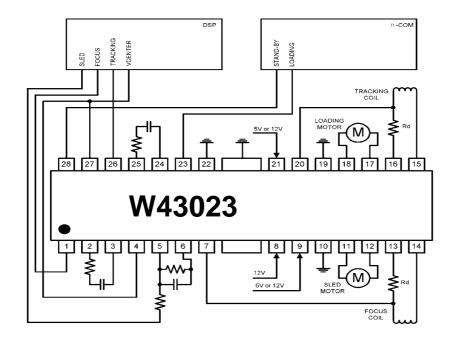


^{*} All specs and applications shown above subject to change without prior notice.

WAFER WIN

4-Channel BTL Motor Driver for CD-ROM

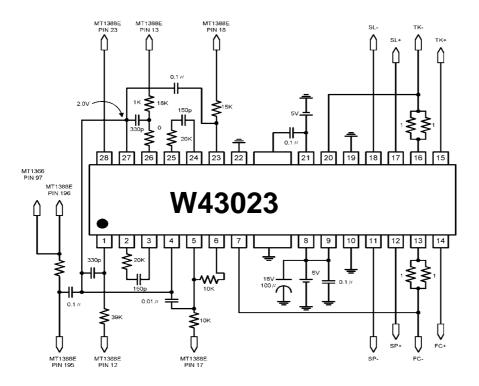



^{*} All specs and applications shown above subject to change without prior notice.

WAFER WIN

4-Channel BTL Motor Driver for CD-ROM

Test Circuit



^{*} All specs and applications shown above subject to change without prior notice.

WAFER WIN

4-Channel BTL Motor Driver for CD-ROM

Application example

DVD-Player

* All specs and applications shown above subject to change without prior notice.

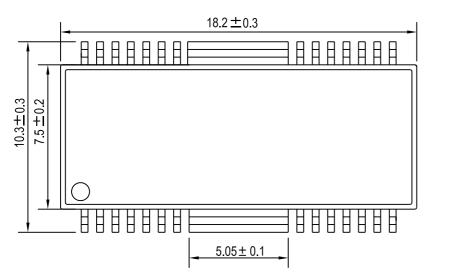
4-Channel BTL Motor Driver for CD-ROM

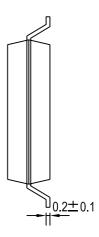
Operation notes

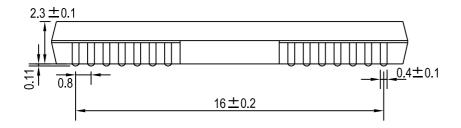
- (1) Thermal-shut-down circuit built in. In case IC chip temperature rise to 175 °C (typ.), thermal-shut-down circuit operates and output current muted. Next time IC chip temperature falls below 150 °C (typ.), the driver blocks start.
- (2) In case stand-by-pin voltage under 0.5V or opened, quiescent current is muted. stand-by-pin voltage should be over 2.0V for normal application.
- (3) Bias-pin (pin 27) should be pulled up more than 1.2V. In case bias-pin voltage is pulled down under 0.9V (typ.), output current is muted.
- (4) Insert the by-pass capacitor between Vcc-pin and GND-pin of IC as possible as near

(approximately $0.1 \mu F$).

- (5) Heat dissipation fins are attached to the GND on the inside of the package. Make sure to connect these to the external GND.
- < Supplement >


Current-feedback driver


Trans conductance (output current/input voltage) is show as follows.


$$g_m = \frac{1}{R_d + R_{WIRE}} (A/V)$$

$$R_{WIRE} = 0.15 \Omega \ (\pm \ 0.05 \Omega) \quad \text{Au wire}$$

Package Outlines (units:mm): HSOP-28

^{*} All specs and applications shown above subject to change without prior notice.