Freescale Semiconductor Data Sheet: Technical Data

Document Number: MC9S08SF4 Rev. 2, 4/2009

MC9S08SF4

MC9S08SF4 Series

Features

- 8-Bit S08 Central Processor Unit (CPU)
 - Up to 40 MHz CPU at 2.7 V to 5.5 V across temperature range of -40 °C to 125 °C
 - HC08 instruction set with added BGND instruction
 - Support for up to 32 interrupt/reset sources
- · On-Chip Memory
 - 4 KB flash read/program/erase over full operating voltage and temperature
 - 128-byte random-access memory (RAM)
 - Security circuitry to prevent unauthorized access to RAM and flash contents
- · Power-Saving Modes
 - Two low power stop modes; reduced power wait mode
 - Allows clocks to remain enabled to specific peripherals in stop3 mode
- **Clock Source Options**
 - Internal Clock Source (ICS) Internal clock source module containing a frequency-locked-loop (FLL) controlled by internal or external reference; precision trimming of internal reference allows 0.2% resolution and 1% deviation over 0-70 °C and voltage, 2% deviation over -40-85 °C and voltage, or 3% deviation over -40-125 °C and voltage; supporting bus frequencies up to 20 MHz
- System Protection
 - Watchdog computer operating properly (COP) reset with option to run from dedicated 1 kHz internal clock source or bus clock
 - Low-voltage detection with reset or interrupt; selectable trip points
 - Illegal opcode detection with reset
 - Illegal address detection with reset
 - Flash block protection
- Development Support
 - Single-wire background debug interface
 - Breakpoint capability to allow single breakpoint setting during in-circuit debugging (plus two more breakpoints)
 - On-chip in-circuit emulator (ICE) debug module containing two comparators and nine trigger modes

20-Pin TSSOP

16-Pin TSSOP Case 948F

CHOS

- Peripherals
 - IPC Prioritize interrupt sources besides inherent CPU interrupt table; support up to 32 interrupt sources and up to 4-level preemptive interrupt nesting
 - ADC 8-channel, 10-bit resolution; 2.5 µs conversion time; automatic compare function; temperature sensor; internal bandgap reference channel; operation in stop; fully functional from 2.7 V to 5.5 V
 - **TPM** One 40 MHz 6-channel and one 40 MHz 1-channel timer/pulse-width modulators (TPM) modules; selectable input capture, output compare, or buffered edge- or center-aligned PWM on each channel
 - MTIM16 Two 16-bit modulo timers

Case 948E

- **PWT** Two 16-bit pulse width timers (PWT); selectable driving clock, positive/negative/period capture
- **PRACMP** Two programmable reference analog comparators with eight optional inputs for both positive and negative inputs; 32-level internal reference voltages scaled by selectable reference inputs
- IIC Inter-integrated circuit bus module capable of operation up to 100 kbps with maximum bus loading; multi-master operation; programmable slave address; interrupt-driven byte-by-byte data transfer; broadcast mode; 10-bit addressing
- KBI 4-pin keyboard interrupt module with software selectable polarity on edge or edge/level modes
- **FDS** Shut down output pin upon fault detection; the fault sources can be optional enabled separately; the output pin can be configured as output 1,0 and high impedance when a fault occurs based on module configuration
- Input/Output
 - 18 GPIOs including one input-only pin and one output-only pin
 - Hysteresis and configurable pullup device on all input pins; schmitt trigger on PWT input pins; configurable slew rate and drive strength on all output pins.
- · Package Options
 - 16-pin TSSOP
 - 20-pin TSSOP

This document contains information on a product under development. Freescale reserves the right to change or discontinue this product without notice.

🗲 free

© Freescale Semiconductor, Inc., 2009. All rights reserved.

Table of Contents

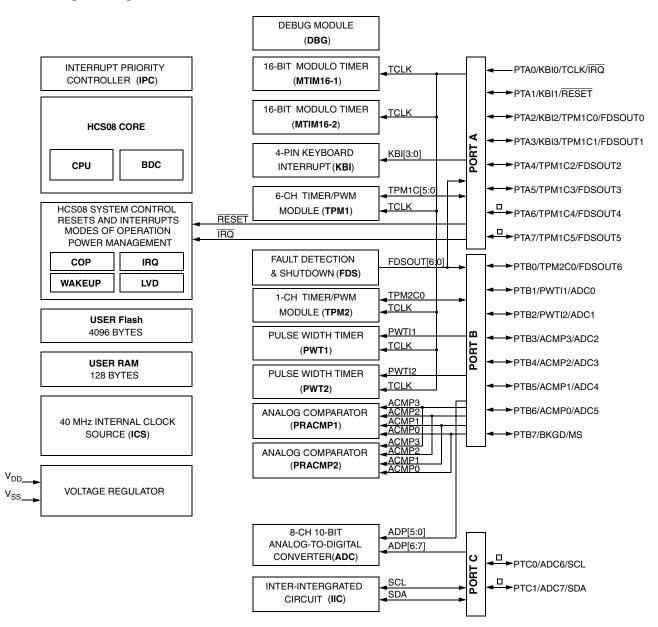
1	MCU	Block Diagram
2	Pin A	Assignments
3	Elect	rical Characteristics 5
	3.1	Introduction
	3.2	Parameter Classification 5
	3.3	Absolute Maximum Ratings
	3.4	Thermal Characteristics 6
	3.5	ESD Protection and Latch-Up Immunity 7
	3.6	DC Characteristics
	3.7	Supply Current Characteristics 14
	3.8	ICS Characteristics 16
	3.9	AC Characteristics
		3.9.1 Control Timing 18
		3.9.2 Timer/PWM (TPM) Module Timing 19
	3.10	ADC Characteristics

	3.11 PRACMP Characteristics	21
	3.12 Flash Specifications	22
4	Ordering Information	23
	Package Information	
	5.1 Mechanical Drawings	

Revision History

The following revision history table summarizes changes contained in this document.

Revision	Date	Description of Changes
2	4/30/2009	Initial public release.

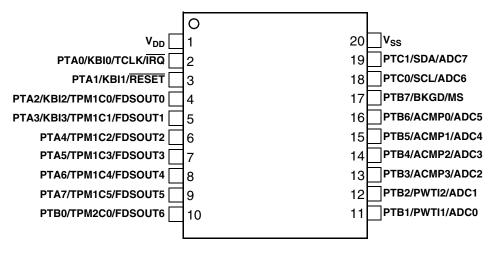

Related Documentation

Reference Manual (MC9S08SF4RM)

Contains extensive product information including modes of operation, memory, resets and interrupts, register definition, port pins, CPU, and all module information.

1 MCU Block Diagram

The block diagram, Figure 1, shows the structure of the MC9S08SF4 MCU.



I = Not Available in 16-pin TSSOP package

Figure 1. MC9S08SF4 Series Block Diagram

2 Pin Assignments

This section shows the pin assignments for the MC9S08SF4 series devices.

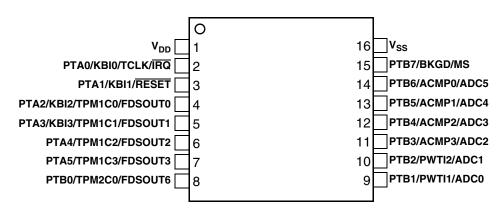


Figure 3. MC9S08SF4 in 16-pin TSSOP Package

3 Electrical Characteristics

3.1 Introduction

This section contains electrical and timing specifications for the MC9S08SF4 series of microcontrollers available at the time of publication.

3.2 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Table 1. Parameter	Classifications
--------------------	-----------------

Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

3.3 Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table 2 may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this section.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}) or the programmable pullup resistor associated with the pin is enabled.

Rating	Symbol	Value	Unit
Supply voltage	V _{DD}	–0.3 to 5.8	V
Maximum current into V _{DD}	I _{DD}	120	mA
Digital input voltage	V _{In}	-0.3 to V _{DD} + 0.3	V
Instantaneous maximum current Single pin limit (applies to all port pins) ^{1, 2, 3}	۱ _D	±25	mA
Storage temperature range	T _{stg}	–55 to 150	°C

Table 2. Absolute Maximum Ratings

Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V_{DD}) and negative (V_{SS}) clamp voltages, then use the larger of the two resistance values.

 $^2\,$ All functional non-supply pins are internally clamped to V_{SS} and V_{DD}

³ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low (which would reduce overall power consumption).

3.4 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits and it is user-determined rather than being controlled by the MCU design. In order to take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Rating	Symbol	Value	Unit
Operating temperature range (packaged)	T _A	T _L to T _H –40 to 125	°C
Thermal resistance (single-layer board) 20-pin TSSOP 16-pin TSSOP	θ_{JA}	115 123	°C/W
Thermal resistance (four-layer board) 20-pin TSSOP 16-pin TSSOP	θ_{JA}	76 75	°C/W

Table 3.	Thermal	Characteristics
----------	---------	-----------------

The average chip-junction temperature (T_J) in °C can be obtained from:

where:

 T_A = Ambient temperature, °C θ_{JA} = Package thermal resistance, junction-to-ambient, °C/W $P_D = P_{int} + P_{I/O}$ $P_{int} = I_{DD} \times V_{DD}$, Watts — chip internal power $P_{I/O}$ = Power dissipation on input and output pins — user determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{D} = K \div (T_{J} + 273^{\circ}C)$$
 Eqn. 2

Solving Equation 1 and Equation 2 for K gives:

$$K = P_D \times (T_A + 273°C) + θ_{JA} \times (P_D)^2$$
 Eqn. 3

where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 1 and Equation 2 iteratively for any value of T_A .

3.5 ESD Protection and Latch-Up Immunity

Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits, normal handling precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

During the device qualification ESD stresses were performed for the human body model (HBM) and the charge device model (CDM).

A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Model	Description	Symbol	Value	Unit
	Series resistance	R1	1500	Ω
Human Body	Storage capacitance	С	100	pF
,	Number of pulses per pin	_	1	
Latch-up	Minimum input voltage limit	_	-2.5	V
Lateri-up	Maximum input voltage limit		7.5	V

Table 4. ESD and Latch-up Test Conditions

Table 5. ESD and Latch-Up Protection Characteristics

No.	Rating ¹	Symbol	Min	Max	Unit
1	Human body model (HBM)	V _{HBM}	±2000	_	V
2	Charge device model (CDM)	V _{CDM}	±500	—	V
3	Latch-up current at $T_A = 125 \ ^{\circ}C$	I _{LAT}	±100		mA

¹ Parameter is achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted.

3.6 DC Characteristics

This section includes information about power supply requirements and I/O pin characteristics. Table 6. DC Characteristics (Temperature Range = -40 to 125 °C Ambient)

Num	С	Parameter	Symbol	Min	Typical	Max	Unit
1	Р	Supply voltage (run, wait, and stop modes.)	V _{DD}	2.7		5.5	V
2	Р	Low-voltage detection threshold — high range $(V_{DD}$ falling) $(V_{DD}$ rising)	V _{LVDH}	3.9 4.0		4.1 4.2	V V
	Ρ	Low-voltage detection threshold — low range $(V_{DD}$ falling) $(V_{DD}$ rising)	V _{LVDL}	2.48 2.54	2.56 2.62	2.64 2.7	V V
3	Р	Low-voltage warning threshold — high range (V _{DD} falling) (V _{DD} rising)	V _{LVWH}	2.66 2.72		2.82 2.88	V V
3	Р	Low-voltage warning threshold — low range (V _{DD} falling) (V _{DD} rising)	V _{LVWL}	2.84 2.90	—	3.00 3.06	V V
4	D	Low-voltage inhibit reset/recover hysteresis 5 V 3 V	V _{hys}		100 60		mV mV
5	Ρ	Bandgap voltage reference Factory trimmed at V_{DD} = 3.0 V, Temp = 25 °C	V _{BG}	1.185	1.200	1.215	v
6	Ρ	Input high voltage (2.7 V \leq V_{DD} \leq 5.5 V) (all digital inputs)	V _{IH}	$0.65 \times V_{DD}$	_	V _{DD} + 0.3	V
7	Ρ	Input low voltage (2.7 V \leq V_{DD} \leq 5.5 V) (all digital inputs)	V _{IL}	V _{SS} -0.3	_	$0.35 \times V_{DD}$	V

Num	С	Parameter	Symbol	Min	Typical	Мах	Unit
8	D	Input hysteresis (all digital inputs)	V _{hys}	$0.06 \times V_{DD}$	_	$0.30 \times V_{DD}$	V
9	Р	Input Leakage Current (pins in high ohmic input mode) ¹ V _{in} = V _{DD5} or V _{SS5}	l _{in}	-1	_	1	μA
10	Ρ	Internal pullup resistors ²	R _{PU}	17.5	40.0	52.5	kΩ
10	Ρ	Internal pulldown resistor (IRQ)	R _{PD}	12.5	—	62.5	kΩ
11	С	Output high voltage All I/O pins, low-drive strength, 5 V, I _{load} = -4 mA		V _{DD} – 1.5	_	_	V
	Р	Output high voltage All I/O pins, low-drive strength, 5 V, I _{load} = -2 mA		V _{DD} – 0.8	_	_	V
	С	Output high voltage All I/O pins, low-drive strength, 3 V, I _{load} = -1 mA	V	V _{DD} – 0.8	_	_	V
	С	Output high voltage All I/O pins, high-drive strength, 5 V, I _{load} = -15 mA	V _{OH}	V _{DD} – 1.5	—	_	V
	Р	Output high voltage All I/O pins, high-drive strength, 5 V, I _{load} = -10 mA		V _{DD} – 0.8	_	_	V
	С	Output high voltage All I/O pins, high-drive strength, 3 V, I _{load} = -5 mA		V _{DD} – 0.8	_	_	V
	С	Output low voltage All I/O pins, low-drive strength, 5 V, I _{load} = 4 mA	-	—	_	1.5	V
	Р	Output low voltage All I/O pins, low-drive strength, 5 V, I _{load} = 2 mA		_	_	0.8	V
12	С	Output low voltage All I/O pins, low-drive strength, 3 V, I _{load} = 1 mA		_	_	0.8	V
12	С	Output low voltage All I/O pins, high-drive strength, 5 V, I _{load} = 15 mA	V _{OL}	_	_	1.5	V
	Р	Output low voltage All I/O pins, high-drive strength, 5 V, I _{load} = 10 mA		_	_	0.8	V
	С	Output low voltage All I/O pins, high-drive strength, 3 V, I _{load} = 5 mA		—	—	0.8	V
13	D	Maximum total I _{OH} for all port pins 5 V 3 V	II _{OHT} I			100 60	mA
13	D	Maximum total I _{OL} for all port pins 5 V 3 V	II _{OLT} I			100 60	mA
14	D	dc injection current ^{2, 3, 4, 5} V _{IN} < V _{SS} , V _{IN} > V _{DD} Single pin limit Total MCU limit, includes sum of all stressed pins	ll _{IC} I			0.2 5	mA mA
15	D	Input capacitance (all non-supply pins)	C _{In}	—	_	7	pF

Table 6. DC Characteristics (continued)(Temperature Range = -40 to 125 °C Ambient) (continued)

¹ Maximum leakage current occurs at maximum operating temperature. Current decreases by approximately one-half for each 8 °C to 12 °C in the temperature range from 50 °C to 125 °C.

- $^2~$ Measurement condition for pull resistors: V_In = V_{SS} for pullup and V_In = V_{DD} for pulldown.
- $^3\,$ All functional non-supply pins are internally clamped to V_{SS} and V_{DD}
- ⁴ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.
- ⁵ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power consumption).

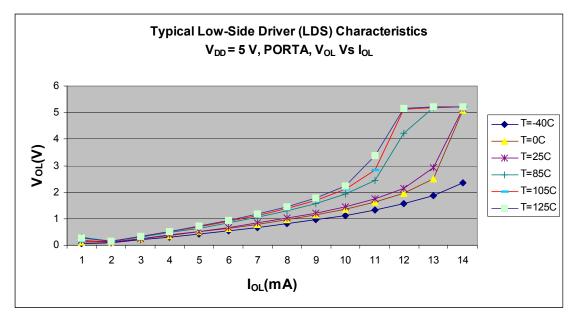


Figure 4. Typical Low-Side Driver (Sink) Characteristics Low Drive (PTxDSn = 0), V_{DD} = 5.0 V, V_{OL} vs. I_{OL}

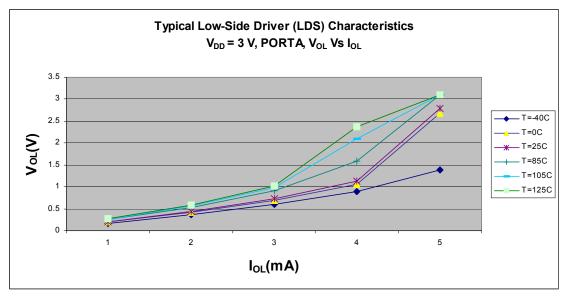


Figure 5. Typical Low-Side Driver (Sink) Characteristics Low Drive (PTxDSn = 0), V_{DD} = 3.0 V, V_{OL} vs. I_{OL}

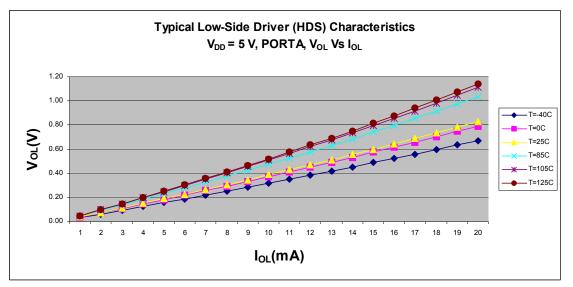


Figure 6. Typical Low-Side Driver (Sink) Characteristics High Drive (PTxDSn = 1), V_{DD} = 5.0 V, V_{OL} vs. I_{OL}



Figure 7. Typical Low-Side Driver (Sink) Characteristics High Drive (PTxDSn = 1), V_{DD} = 3.0 V, V_{OL} vs. I_{OL}

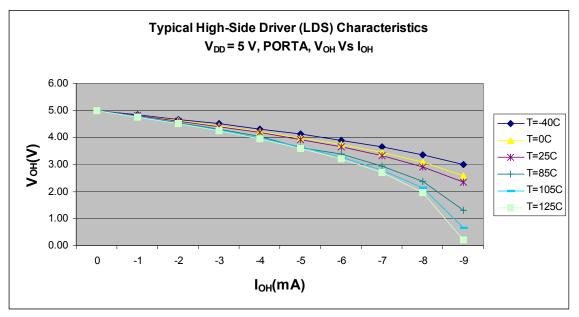


Figure 8. Typical High-Side Driver (Source) Characteristics Low Drive (PTxDSn = 0), V_{DD} = 5.0 V, V_{OH} vs. I_{OH}

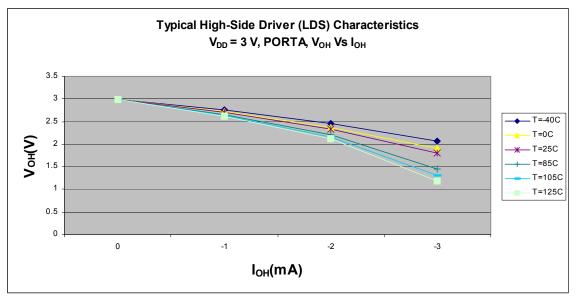


Figure 9. Typical High-Side Driver (Source) Characteristics Low Drive (PTxDSn = 0), V_{DD} = 3.0 V, V_{OH} vs. I_{OH}

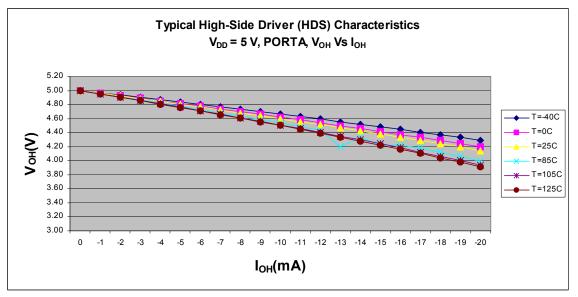


Figure 10. Typical High-Side Driver (Source) Characteristics High Drive (PTxDSn = 1), V_{DD} = 5.0 V, V_{OH} vs. I_{OH}

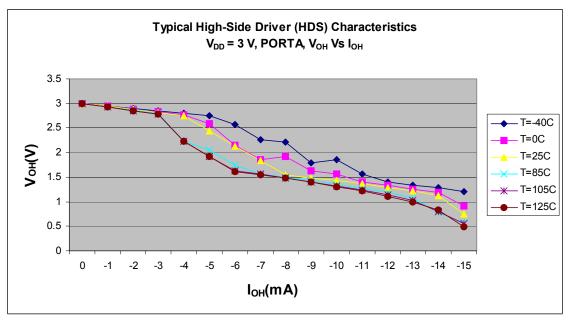


Figure 11. Typical High-Side Driver (Source) Characteristics High Drive (PTxDSn = 1), V_{DD} = 3.0 V, V_{OH} vs. I_{OH}

3.7 Supply Current Characteristics

This section includes information about power supply current in various operating modes.

Num	С	Parameter	Symbol	V _{DD} (V)	Typical ¹	Max ²	Unit
1	Ρ	Run supply current ³ measured at		5	1.75	1.77	_
· ·	D	(CPU clock = 2 MHz, $f_{Bus} = 1 MHz$)	RI _{DD}	3	1.71	1.73	mA
2	Ρ	Run supply current ³ measured at		5	5.69	6.25	_
2	D	(CPU clock = 16 MHz, f _{Bus} = 8 MHz)	RI _{DD}	3	4.63	4.66	mA
3	Ρ	Run mode supply current ³ measured at		5	11.53	12.00	
3	D	(CPU clock = 40 MHz, f_{Bus} = 20 MHz)	RI _{DD}	3	10.39	11.00	mA
4	Ρ	Wait mode supply current ⁴ measured at		5	3.95	4.54	
4	D	(f _{Bus} = 8 MHz) WI _{DD}	WI _{DD}	3	3.58	4.00	mA
5	Ρ	Wait mode supply current ⁴ measured at		5	8.36	9.62	mA
5	D	(f _{Bus} = 20 MHz)	WI _{DD}	3	7.97	8.07	IIIA
	Ρ	Stop2 mode supply current -40 to 85 °C		5	1.99	18.47	
6	Р	–40 to 125 °C	501			100	μA
	D	–40 to 85°C	S2I _{DD}	3	1.95	16.9	
	D	–40 to 125°C		3	1.55	90	

 Table 7. Supply Current Characteristics

Supply Current Characteristics

Num	С	Parameter	Symbol	V _{DD} (V)	Typical ¹	Max ²	Unit
	Ρ	Stop3 mode supply current				10.4	
	_	−40 to 85 °C −40 to 125 °C		5	2	18.4	-
7	Р		S3I _{DD}			100	μΑ
	D	−40 to 85 °C −40 to 125 °C	UU	3	1.97	16.82	-
	D	-4010125 C				90	
8	D	PRACMP (PRG disabled) adder to stop3,	_	5	28.87		nA
Ũ	D	25 °C		3	27.06	—	nA
9	D	PRACMP (PRG enabled) adder to stop3,		5	79.42	—	nA
3	D	25 °C		3	57.4	_	nA
10	D	ADC adder to ston? or ston? 25 °C		5	25	_	nA
10	D	ADC adder to stop2 or stop3, 25 °C	_	3	6	_	nA
	D			5	83.52	_	nA
11	D	LVD adder to stop3 (LVDE = LVDSE = 1)	_	3	83.52	_	nA
40	D	Adder to stop3 for oscillator enabled		5	0.03	_	μA
12	D	(IREFSTEN = 1)	—	3	0.01	_	μA
4.0	D	TPM1 and TPM2 adder to run mode, 25 °C		5	0.16	_	mA
13	D	(CPU clock = 40 MHz, f _{Bus} = 20 MHz)	_	3	0.18		mA
	D	PWT1 and PWT2 adder to run mode, 25 °C		5	0.43	_	mA
14	D	(CPU clock = 40 MHz, f _{Bus} = 20 MHz)	—	3	0.41	_	mA
	D	PRACMP adder to run mode, 25 °C		5	0.35	_	mA
15	D	(CPU clock = 40 MHz, f_{Bus} = 20 MHz)	—	3	0.35	_	mA
	D	MTIM1 and MTIM2 adder to run mode, 25 °C		5	0.26		mA
16	D	(CPU clock = 40 MHz, f_{Bus} = 20 MHz)	—	3	0.24	_	mA
	D	ADC adder to run mode, 25 °C		5	0.42	_	mA
17	D	(CPU clock = 40 MHz, f_{Bus} = 20 MHz)	—	3	0.32	_	mA
	D	IIC adder to run mode, 25 °C		5	0.56		mA
18	D	(CPU clock = 40 MHz, f _{Bus} = 20 MHz)	—	3	0.53		mA
		(3	0.55		IIIA

Table 7. Supply Current Characteristics (continued)

¹ Typicals are measured at 25 °C.

² Values given here are preliminary estimates prior to completing characterization.

³ All modules except ADC active, and does not include any dc loads on port pins.

⁴ Most customers are expected to find that the auto-wakeup from a stop mode can be used instead of the higher current wait mode.

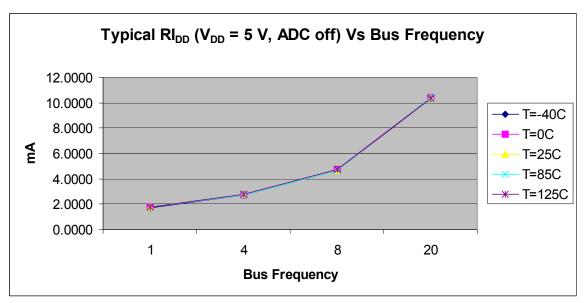


Figure 12. Typical Run I_{DD} vs. Bus Freq. (FEI) (ADC off)

3.8 ICS Characteristics

Refer to Figure 13 for crystal or resonator circuits.

Table 8. ICS Specifications	(Temperature Range = -40 to 125 °C Ambient)
-----------------------------	--

Num	С	Charac	teristic	Symbol	Min	Typical ¹	Max	Unit
1	Т	Internal reference start-u	p time	t _{IRST}	—	60	100	μs
2	Ρ	Average internal reference frequency — trimmed		f _{int_t}	—	39.0625	_	kHz
3	Ρ	DCO output frequency	Low range (DRS = 00)	f _{dco_t}	16	—	20	MHz
5	Ρ	range — trimmed	Middle range (DRS = 10)	'dco_t	32	—	40	
4	Ρ	Total deviation of DCO ou frequency ² Over full voltage and tem to 125°C				-1.0 to 0.5	±3	
5	D	frequency	over full voltage and temperature range of -40°C 85°C otal deviation of DCO output from trimmed equency over fixed voltage and temperature range of 0 to		_	-1.0 to 0.5	±2	%f _{dco}
6	D	frequency				±0.5	±1	
7	С	FLL acquisition time ^{2,3}		t _{Acquire}	_	—	1	ms
8	с	Long term jitter of DCO o over 2 ms interval) ⁴	utput clock (averaged	C _{Jitter}	_	0.02	0.2	%f _{dco}

- ¹ Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
- ² This parameter is characterized and not tested on each device.
- ³ This specification applies to any time the FLL reference source or reference divider is changed, trim value changed, DMX32 bit is changed, DRS bit is changed, or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- ⁴ Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{Bus}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

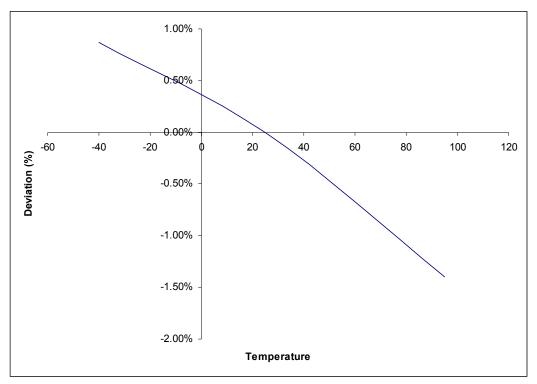


Figure 13. Deviation of DCO Output from Trimmed Frequency (20 MHz, 5.0 V)

3.9 AC Characteristics

This section describes AC timing characteristics for each peripheral system.

3.9.1 Control Timing

Parameter	Symbol	Min	Typical ¹	Max	Unit
Bus frequency (t _{cyc} = 1/f _{Bus})	f _{Bus}	1		20	MHz
External reset pulse width ²	t _{extrst}	100	—	—	ns
IRQ pulse width Asynchronous path ² Synchronous path ³	t _{ILIH,} t _{IHIL}	100 1.5 t _{cyc}	_	_	ns
KBIPx pulse width Asynchronous path ² Synchronous path ³	t _{ILIH,} t _{IHIL}	100 1.5 t _{cyc}	_	_	ns
Port rise and fall time $(load = 50 \text{ pF})^4$ Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1)	t _{Rise} , t _{Fall}		3 30		ns
BKGD/MS setup time after issuing background debug force reset to enter user or BDM modes	t _{MSSU}	500	_	_	ns
BKGD/MS hold time after issuing background debug force reset to enter user or BDM modes ⁵	t _{MSH}	100	—	—	μs

Table 9. Control Timing

 $^1\,$ Data in Typical column was characterized at 5.0 V, 25 °C.

 $^{2}\;$ This is the shortest pulse that is guaranteed to be recognized.

³ This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized in that case.

 4 Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range –40°C to 125°C.

⁵ To enter BDM mode following a POR, BKGD/MS should be held low during the power-up and for a hold time of t_{MSH} after V_{DD} rises above V_{LVD} .

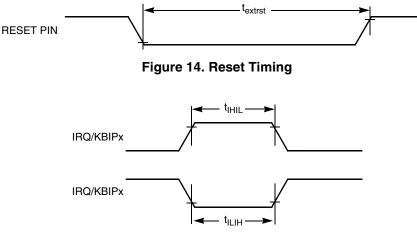


Figure 15. IRQ/KBIPx Timing

3.9.2 Timer/PWM (TPM) Module Timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

Function	Symbol	Min	Мах	Unit
External clock frequency	f _{TCLK}	dc	f _{timer} /4	MHz
External clock period	t _{TCLK}	4	—	t _{cyc}
External clock high time	t _{clkh}	1.5	—	t _{cyc}
External clock low time	t _{clkl}	1.5	—	t _{cyc}
Input capture pulse width for TPM	t _{ICPW}	1.5	—	t _{cyc}
Timer clock frequency	f _{timer}	—	40	MHz

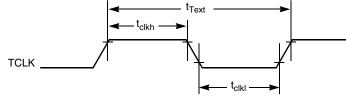


Figure 16. Timer External Clock

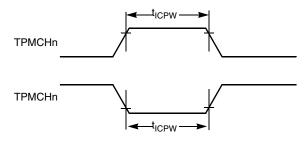


Figure 17. Timer Input Capture Pulse

3.10 ADC Characteristics

Table 1	1. ADC	Characteristics
---------	--------	-----------------

Num	С	Characteristic	Conditions	Symb	Min	Typical ¹	Max	Unit	Comment
1	D	Supply current ADLPC = 1	V _{DDA} ≤ 3.6 V (3.0 V Typ)		_	110	_	μA	
I	D	ADLSMP = 1 ADCO = 1	V _{DDA} ≤ 5.5 V (5.0 V Typ)	_ I _{DDA}	_	130	—	μΛ	
2	D	Supply current ADLPC = 1	V _{DDA} ≤ 3.6 V (3.0 V Typ)	I _{DDA}	—	200	—	μA	
L	D	ADLSMP = 0 ADCO = 1	V _{DDA} ≤ 5.5 V (5.0 V Typ)	'DDA	_	220	_	μ	Over
3	D	Supply current ADLPC = 0	V _{DDA} ≤ 3.6 V (3.0 V Typ)	I _{DDA}	_	320	—	μA	temperature (Typ 25°C)
0	D	ADLSMP = 1 ADCO = 1	V _{DDA} ≤ 5.5 V (5.0 V Typ)	'DDA	_	360	_	μΛ	(.)P=)
4	D	Supply current ADLPC = 0	V _{DDA} ≤ 3.6V (3.0 V Typ)		_	580	_	μA	
4	D	ADLSMP = 0 ADCO = 1	V _{DDA} ≤ 5.5V (5.0 V Typ)	_ I _{DDA}	_	660	—	μΛ	
5	D	Supply current	Stop, Reset, Module Off	I _{DDA}	_	<1	100	nA	
6	D	Ref voltage high	—	V _{REFH}	2.7	V _{DDA}	V _{DDA}	V	
0	D	Ref coltage low	—	V _{REFL}	V _{SSA}	V _{SSA}	V _{SSA}	V	
7	D	ADC conversion	High speed (ADLPC = 0)	f	0.4	_	8.0	- MHz	t _{ADCK} =
/	D	clock	Low power (ADLPC = 1)	f _{ADCK} –	0.4	_	4.0 MHZ		1/f _{ADCK}
8	D	ADC asynchronous	High speed (ADLPC = 0)	function	2.5	4	6.6	MHz	t _{ADACK} =
0	D	clock source	Low power (ADLPC = 1)	– ^f adack	1.25	2	3.3		1/f _{ADACK}
9	D	Conversion time	Short sample (ADLSMP = 0)	t	20	20	23	t _{ADCK}	Add 2 to 5 t _{Bus} =1/f _{Bus}
3	D		Long sample (ADLSMP = 1)	t _{ADC}	40	40	43	cycles	cycles
10	D	Sample time	Short sample (ADLSMP = 0)	t	4	4	4	t _{ADCK}	
10	D	Sample line	Long sample (ADLSMP = 1)	t _{ADS}	24	24	24	cycles	
11	D	Input voltage	—	V _{ADIN}	V _{REFL}	—	V _{REFH}	V	
12	D	Input capacitance	_	C _{ADIN}	_	7	10	pF	Not Tested
13	D	Input impedance	—	R _{ADIN}	—	5	15	kΩ	Not Tested
14	D	Analog source impedance	_	R _{AS}		—	10 ²	kΩ	External to MCU

PRACMP Characteristics

Num	С	Characteristic	Conditions	Symb	Min	Typical ¹	Max	Unit	Comment
15	D	Ideal resolution	10-bit mode	RES	2.637	4.883	5.371	mV	V _{REFH} /2 ^N
15	D	(1LSB)	8-bit mode	neo	10.547	19.53	21.48	111V	VREFH/∠
16	D	Total unadjusted	10-bit mode	E	0	±1.5	±3.5	LSB	Includes
10	D	error	8-bit mode	E _{TUE}	0	±0.7	±1.0	LOD	quantization
17	Р	Differential	10-bit mode	DNL	0	±0.5	±1.0	LSB	
17	С	non-linearity ³	8-bit mode	DINL	0	±0.3	±0.5	LOD	
18	Р	Integral	10-bit mode	INL	0	±0.5	±1.0	LSB	
10	С	non-linearity	8-bit mode		0	±0.3	±0.5	LOD	
19	D	Zero-scale error	10-bit mode	E	0	±1.5	±3.1	LSB	V _{ADIN} = V _{SSA}
19	D	Zero-scale error	8-bit mode	E _{ZS}	0	±0.5	±0.7	100	VADIN - VSSA
20	D	Full-scale error	10-bit mode	E	0	±1.0	±1.5	LSB	V _{ADIN} = V _{DDA}
20	D	i ull-scale enoi	8-bit mode	E _{FS}	0	±0.5	±0.5	100	VADIN - VDDA
21	D	Quantization error	10-bit mode	EQ	_	_	±0.5	LSB	8-bit mode is not truncated
22	Р	Temp sensor	_40_25 °C	—	_	3.266	_		
~~	Г	slope	25–125 °C	—	—	3.638	—	—	
23	Ρ	Temp sensor voltage	_	—		1.396	_	_	

Table 11. ADC Characteristics (continued)

¹ Typical values assume V_{DDA} = 5.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

 2 At 4 MHz, for maximum frequency, use proportionally lower source impedance.

³ Monotonicity and no-missing-codes guaranteed

3.11 **PRACMP** Characteristics

Table 12. PRACMP Specifications

Num	С	Characteristic	Symbol	Min	Typical	Max	Unit
1	Ρ	Supply voltage	V _{PWR}	2.70	_	5.50	V
2	С	Supply current (active) (PRG enabled)	I _{DDACT1}			60	μA
3	С	Supply current (active) (PRG disabled)	I _{DDACT2}	_	_	40	μA
4	С	Supply current (ACMP and PRG all disabled)	I _{DDDIS}	_	_	2	nA
5	С	Analog input voltage	V _{AIN}	$V_{SS} - 0.3$	_	V _{DD50}	V
6	С	Analog input offset voltage	V _{AIO}	—	5	40	mV
7	С	Analog comparator hysteresis	V _H	3.0	_	20.0	mV
8	С	Analog input leakage current	I _{ALKG}	—	_	1	nA
9	С	Analog comparator initialization delay	t _{AINIT}	—		1.0	μS

Flash Specifications

Num	С	Characteristic	Symbol	Min	Typical	Max	Unit
10	D	Programmable reference generator inputs	V _{In1} (V _{DD50})	2.7	5.0	5.5	v
11	D	Programmable reference generator inputs	V _{In2} (V _{DD25})	2.25	2.5	2.75	v
12	С	Programmable reference generator step size	V _{step}	-0.25	0	0.25	LSB
13	Ρ	Programmable reference generator voltage range	V _{prgout}	V _{In} /32	_	V _{in}	V

Table 12. PRACMP Specifications (continued)

3.12 Flash Specifications

This section provides details about program/erase times and program-erase endurance for the flash memory.

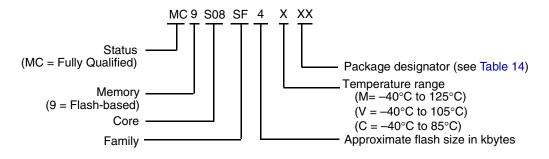
Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see the Memory section.

Characteristic Symbol Min Typical Max Unit Supply voltage for program/erase V V_{prog/erase} 2.7 5.5 -40°C to 125°C Supply voltage for read operation 2.7 5.5 v V_{Read} _ Internal FCLK frequency¹ 150 kHz 200 f_{FCLK} Internal FCLK period (1/FCLK) 5 6.67 μS t_{Fcvc} Byte program time (random location)⁽²⁾ 9 tprog t_{Fcvc} Byte program time (burst mode)⁽²⁾ 4 t_{Burst} t_{Fcyc} Page erase time² 4000 tPage t_{Fcyc} Mass erase time⁽²⁾ 20,000 t_{Mass} t_{Fcyc} Program/erase endurance³ T_L to $T_H = -40 \text{ °C}$ to 125 °C 10,000 cycles T = 25°C 100,000 Data retention⁴ 15 100 t_{D ret} ____ vears

Table 13. Flash Characteristics

¹ The frequency of this clock is controlled by a software setting.

² These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for calculating approximate time to program and erase.

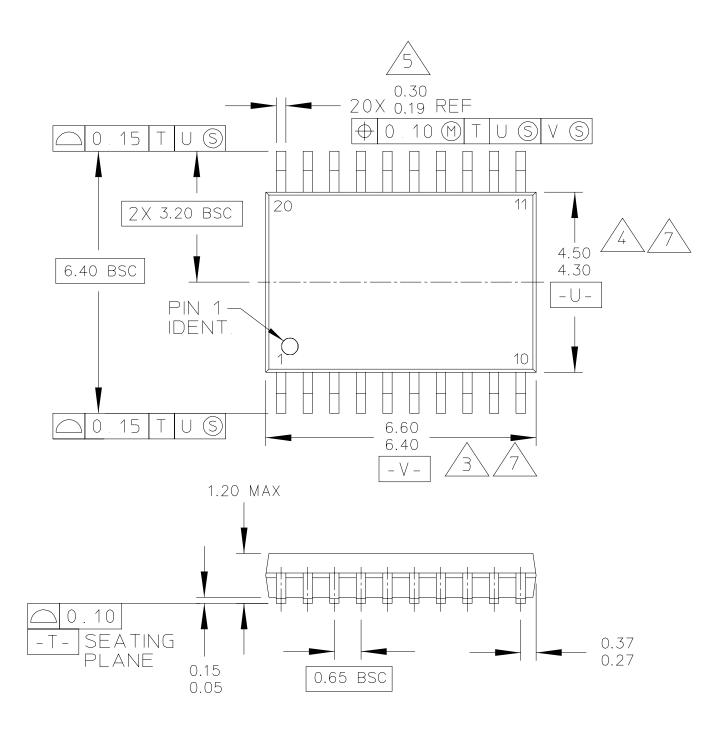

³ **Typical endurance for flash** was evaluated for this product family on the 9S12Dx64. For additional information on how Delta defines typical endurance, please refer to Engineering Bulletin EB619/D, *Typical Endurance for Nonvolatile Memory*.

⁴ Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to 25°C using the Arrhenius equation. For additional information on how Delta defines typical data retention, please refer to Engineering Bulletin EB618/D, *Typical Data Retention for Nonvolatile Memory.*

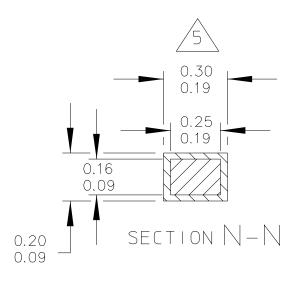
4 Ordering Information

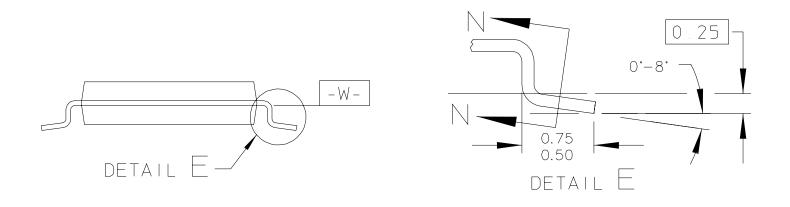
This section contains ordering information for device numbering system

Example of the device numbering system:



5 Package Information


Pin Count	Package Type	Abbreviation	Designator	Case No.	Document No.
20	Thin Shrink Small Outline Package	TSSOP	TJ	948E	98ASH70169A
16	Thin Shrink Small Outline Package	TSSOP	TG	948F	98ASH70247A


5.1 Mechanical Drawings

The following pages are mechanical drawings for the packages described in Table 14. For the latest available drawings, please visit our web site (http://www.freescale.com) and enter the package's document number into the keyword search box.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.		L OUTLINE	PRINT VERSION NE	IT TO SCALE
		DOCUMENT NE]: 98ASH70169A	RE∨: C
20 LD TSSOP, PITCH	.65MM	CASE NUMBER	2: 948E-02	25 MAY 2005
		STANDARD: JE	IDEC	

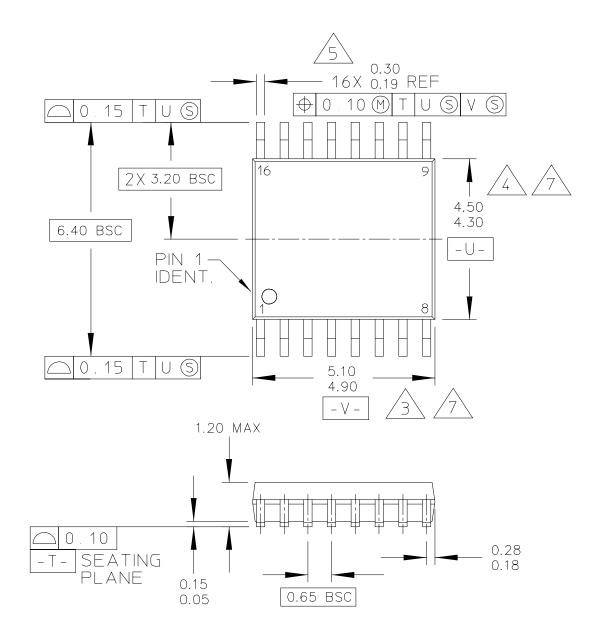
© FREESCALE SEMICONDUCTOR, INC. All rights reserved.		AL OUTLINE PRINT VERSION NOT 1		IT TO SCALE
TITLE: 20 LD TSSOP, PITCH 0.65MM		DOCUMENT NE]: 98ASH70169A	RE∨: C
		CASE NUMBER	2: 948E-02	25 MAY 2005
		STANDARD: JE	DEC	

NOTES:

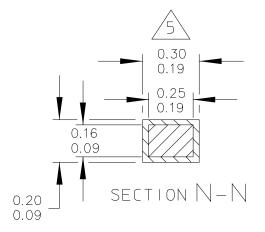
1. CONTROLLING DIMENSION: MILLIMETER

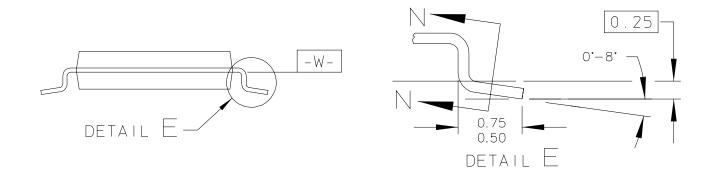
2. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M-1982.

3 DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE.


4 dimension does not include interlead flash or protrusion. Interlead flash or protrusion shall not exceed 0.25 per side.

5 DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF THE DIMENSION AT MAXIMUM MATERIAL CONDITION.


6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY


 7 dimensions are to be determined at datum plane [-w-

© FREESCALE SEMICONDUCTOR, INC. All rights reserved.		AL OUTLINE PRINT VERSION NOT TO SC		IT TO SCALE
TITLE:	DOCUMENT NO]: 98ASH70169A	RE∨: C	
20 LD TSSOP, PITCH 0	CASE NUMBER	8: 948E-02	25 MAY 2005	
		STANDARD: JE	IDEC	

© FREESCALE SEMICONDUCTOR, INC. All RIGHTS RESERVED.	l outline	PRINT VERSION NO	IT TO SCALE
TITLE:	DOCUMENT NE]: 98ASH70247A	RE∨: B
16 LD TSSOP, PITCH 0.6	CASE NUMBER: 948F-01		19 MAY 2005
	STANDARD: JEDEC		

© FREESCALE SEMICONDUCTOR, INC. All rights reserved.		L OUTLINE	PRINT VERSION NO	IT TO SCALE
TITLE:		DOCUMENT NE]: 98ASH70247A	RE∨: B
16 LD TSSOP. PITCH 0.	CASE NUMBER: 948F-01 19 MAY		19 MAY 2005	
		STANDARD: JE	DEC	

NOTES:

1. CONTROLLING DIMENSION: MILLIMETER

2. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M-1982.

<u>/</u>3 DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE.

4 DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 PER SIDE

5 DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF THE DIMENSION AT MAXIMUM MATERIAL CONDITION.

6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.

 $\overline{7}$ dimensions are to be determined at datum plane $\overline{-W}$ -

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE	
TITLE:	DOCUMENT NE]: 98ASH70247A	RE∨: B	
16 LD TSSOP, PITCH 0.6	CASE NUMBER: 948F-01 19 MAY		19 MAY 2005	
		STANDARD: JEDEC		

How to Reach Us:

Home Page:

www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale ™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2009. All rights reserved.

MC9S08SF4 Rev. 2 4/2009