
Current Transducer LT 1000-SI/SP60

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

$I_{DN} = 1000 A$

Electrical data

l _{PN}	Primary nominal r.m.s. current Primary current, measuring range @ ± 24 V		1000 0 ± 1	800	A A
I _P R _M	Measuring resistance		R _{M min}	R _{Mmax}	
	with ± 15 V	@ $\pm 1000 A_{max}$	0	25	Ω
		@ ± 1500 A _{max}	0	3	Ω
	with $\pm 24 \text{ V}$	@ ± 1000 A _{max}	10	65	Ω
		@ ± 1800 A _{max}	10	18	Ω
I_{SN}	Secondary nominal r.m.s. current		200		mΑ
K _N	Conversion ratio		1:500	0	
V _c	Supply voltage (± 5 %)		± 15	24	V
I _C	Current consumption		45 + I _s		mΑ
\mathbf{V}_{d}	R.m.s. voltage for AC	6		kV	

Accuracy - Dynamic performance data

X _G	Overall accuracy @ \mathbf{I}_{PN} , \mathbf{T}_{A} = 25°C Linearity		± 0.3 < 0.1	% %
I _о	Offset current @ $\mathbf{I}_{\rm p} = 0$, $\mathbf{T}_{\rm A} = 25^{\circ}{\rm C}$ Thermal drift of $\mathbf{I}_{\rm O}$	- 25°C + 70°C	Typ Max ± 0.2 ± 0.2	mA mA
t _, di/dt f	Response time $^{1)}$ @ 90 % of $\mathbf{I}_{\text{P max}}$ di/dt accurately followed Frequency bandwidth (- 1 dB)		< 1 > 50 DC 100	μs Α/μs kHz

General data

T_{A}	Ambient operating temperature	- 25 + 70	°C
T _s	Ambient storage temperature	- 40 + 85	°C
\mathbf{R}_{s}	Secondary coil resistance @ T _A = 70°C	40	Ω
m	Mass	0.9	kg
	Standards 2)	EN 50155	

Notes: 1) With a di/dt of 100 A/µs

2) A list of corresponding tests is available

Features

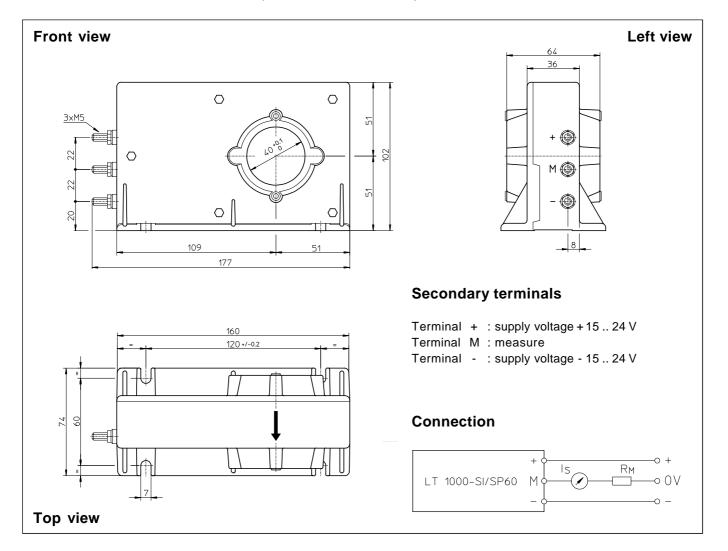
- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Special features

- $I_p = 0 .. \pm 1800 \text{ A } (@ \pm 24 \text{ V})$
- $V_{c} = \pm 15 ... 24 (\pm 5 \%) V$
- $T_{\Delta} = -25^{\circ}C ... + 70^{\circ}C$
- · Hall cell mounted vertically
- Connection to secondary circuit on M5 threaded studs
- Railway equipment.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.


Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

981013/2

Dimensions LT 1000-SI/SP60 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening
- Primary through-hole
- Connection of secondary Fastening torque
- ± 0.5 mm
- 4 holes Ø 7 mm
- Ø 40 mm

M5 threaded studs

2.2 Nm or 1.62 Lb - Ft

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.