Φ
TAIWAN SEMICONDUCTOR

Pb
 RoHS
 COMPLIANCE

Features

UL Recognized File \# E-326243
$\diamond \quad$ Glass passivated chip junction.
\star High efficiency, Low VF
« High current capability
« High reliability

- High surge current capability
\& Low power loss
\diamond Green compound with suffix "G" on packing code \& prefix " G " on datecode.

Mechanical Data

\diamond Cases: TO-220AB molded plastic
\& Epoxy: UL 94V-0 rate flame retardant
< Terminals: Pure tin plated, lead free. solderable per MIL-STD-202, Method 208 guaranteed
\diamond Polarity: As marked
» High temperature soldering guaranteed: $260^{\circ} \mathrm{C} / 10$ seconds $.16^{\prime \prime},(4.06 \mathrm{~mm})$ from case.
> Weight: 2.24 grams

GP1001 - GP1007
10.0 AMPS. Glass Passivated Rectifiers

TO-220AB

Dimensions in inches and (millimeters)

Marking Diagram
GP100X = Specific Device Code
$\mathrm{G} \quad=$ Green Compound
Y $\quad=$ Year
WW = Work Week

Maximum Ratings and Electrical Characteristics

Rating at $25^{\circ} \mathrm{C}$ ambient temperature unless otherwise specified.
Single phase, half wave, 60 Hz , resistive or inductive load.
For capacitive load, derate current by 20%

Type Number	Symbol	$\begin{gathered} \text { GP } \\ 1001 \end{gathered}$	$\begin{gathered} \text { GP } \\ 1002 \end{gathered}$	$\begin{gathered} \text { GP } \\ 1003 \end{gathered}$	$\begin{gathered} \text { GP } \\ 1004 \end{gathered}$	$\begin{gathered} \text { GP } \\ 1005 \end{gathered}$	$\begin{gathered} \text { GP } \\ 1006 \end{gathered}$	$\begin{gathered} \text { GP } \\ 1007 \end{gathered}$	Units
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	V
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	V
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	V
Maximum Average Forward RectifiedCurrent $375 "(9.5 \mathrm{~mm})$ Lead Length @ $T_{C}=100^{\circ} \mathrm{C}$	IF(AV)	10.0							A
Peak Forward Surge Current, 8.3 ms Single Half Sine-wave Superimposed on Rated Load (JEDEC method)	IFSM	125							A
Maximum Instantaneous Forward Voltage @5.0A	VF	1.1							V
Maximum DC Reverse Current at @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Rated DC Blocking Voltage (Note 1) @ $\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	IR	$\begin{array}{r} 5.0 \\ 200 \\ \hline \end{array}$							uA uA
Typical Junction Capacitance (Note 3)	Cj	30							pF
Typical Thermal Resistance (Note 2)	Rejc	3.0							${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating and Storage Temperature Range	TJ, Tstg	-65 to +150							${ }^{\circ} \mathrm{C}$

Notes: 1. Pulse Test with PW=300 usec,1\% Duty Cycle
2. Mounted on Heatsink size 2 " $\times 3$ " $\times 0.25$ " Al-Plate.
3. Measured at 1 MHz and Applied Reverse Voltage of 4.0 Volts D.C.

RATINGS AND CHARACTERISTIC CURVES (GP1001 THRU GP1007)

FIG.4- TYPICAL JUNCTION CAPACITANCE

FIG.2- TYPICAL REVERSE CHARACTERISTICS

