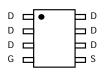
P-Channel Enhancement Mode Field Effect Transistor

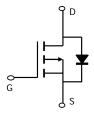
General Description

The AON4413 uses advanced trench technology to provide excellent $R_{DS(ON)}$ with low gate charge. This device is suitable for use as a load switch or in PWM applications. Standard product AON4413 is Pb-free (meets ROHS & Sony 259 specifications).

Features

 $V_{DS}(V) = -30V$


 $I_D = -6.5A$ $(V_{GS} = -10V)$


 $R_{DS(ON)}$ < 46m Ω (V_{GS} = -10V)

 $R_{DS(ON)}$ < 60m Ω (V_{GS} = -6V)

Absolute Maximum Ratings T _A =25°C unless otherwise noted							
Parameter		Symbol	10 Sec	Steady State	Units		
Drain-Source Voltage		V_{DS}	-30		V		
Gate-Source Voltage		V_{GS}	±20		V		
Continuous Drain Current ^A	T _A =25°C		-6.5	-4.7			
	T _A =70°C	I _D	-5.3	-3.7	Α		
Pulsed Drain Current ^B		I _{DM}	-25				
Power Dissipation ^A	T _A =25°C	В	3.1	1.6	W		
	T _A =70°C	P_D	2.0	1.0	VV		
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150		°C		

Thermal Characteristics						
Parameter	Symbol	Тур	Max	Units		
Maximum Junction-to-Ambient A	t ≤ 10s		34	40	°C/W	
Maximum Junction-to-Ambient A	Steady State	teady State		80	°C/W	
Maximum Junction-to-Lead ^C	Steady State	$R_{\scriptscriptstyle{ hetaJL}}$	20	25	°C/W	

P-Channel Enhancement Mode Field Effect Transistor

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
STATIC F	PARAMETERS						
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = -250 \mu A, V_{GS} = 0 V$		-30			V
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -30V, V_{GS} = 0V$				-1	μА
			$T_J = 55^{\circ}C$			-5	μΛ
I_{GSS}	Gate-Body leakage current	$V_{DS} = 0V, V_{GS} = \pm 20V$,			±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS} I_{D} = -250 \mu A$		-1.5	-2	-2.5	V
$I_{D(ON)}$	On state drain current	$V_{GS} = -10V, V_{DS} = -5V$	1	-25			Α
	Static Drain-Source On-Resistance	$V_{GS} = -10V, I_D = -6.5A$			38	46	mΩ
R _{DS(ON)}			T _J =125°C		54	65	1115.2
		$V_{GS} = -6V, I_D = -5.3A$			48	60	mΩ
g _{FS}	Forward Transconductance	$V_{DS} = -5V, I_{D} = -6.5A$			11		S
V_{SD}	Diode Forward Voltage	$I_S = -1A, V_{GS} = 0V$			0.77	-1	V
Is	Maximum Body-Diode Continuous Current					-3	Α
DYNAMIC	PARAMETERS						
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =-15V, f=1MHz			668	830	pF
C _{oss}	Output Capacitance				126		pF
C _{rss}	Reverse Transfer Capacitance				92		pF
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1MHz			6	9	Ω
SWITCHI	NG PARAMETERS						
Q _g (10V)	Total Gate Charge (10V)	V _{GS} =-10V, V _{DS} =-15V, I _D =-6.5A			12.7	17	nC
Q _g (4.5V)	Total Gate Charge (4.5V)				6.4	8.5	nC
Q_{gs}	Gate Source Charge				2		nC
Q_{gd}	Gate Drain Charge				4		nC
t _{D(on)}	Turn-On DelayTime	V_{GS} =-10V, V_{DS} =-15V, R_L =2.3 Ω , R_{GEN} =3 Ω			7.7		ns
t _r	Turn-On Rise Time				6.8		ns
$t_{D(off)}$	Turn-Off DelayTime				20		ns
t _f	Turn-Off Fall Time				10		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =-6.5A, dI/dt=100A/	μs		22	30	ns
Q_{rr}	Body Diode Reverse Recovery Charg	ge I _F =-6.5A, dI/dt=100A/μs			15		nC

A: The value of R $_{0,JA}$ is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with T $_A$ = 25°C. The value in any a given application depends on the user's specific board design. The current rating is based on the t $_{-}$ \leq 10s thermal resistance rating.

Rev1: June 2007

B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6 are obtained using < 300 μs pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T $_A$ =25°C. The SOA curve provides a single pulse rating.

P-Channel Enhancement Mode Field Effect Transistor

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

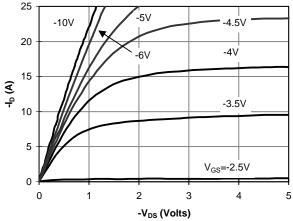


Figure 1: On-Region Characteristics

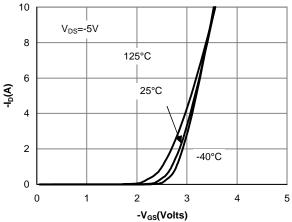


Figure 2: Transfer Characteristics

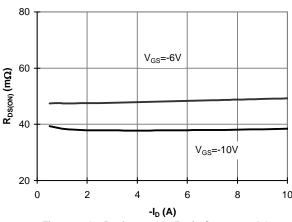


Figure 3: On-Resistance vs. Drain Current and Gate Voltage

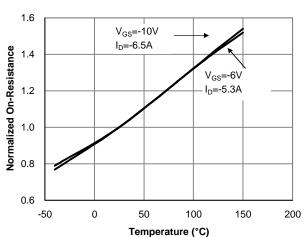


Figure 4: On-Resistance vs. Junction Temperature

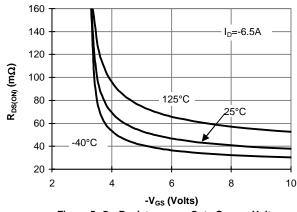


Figure 5: On-Resistance vs. Gate-Source Voltage

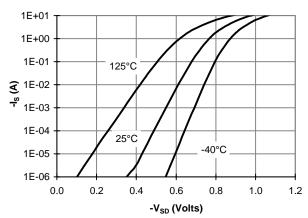


Figure 6: Body-Diode Characteristics

P-Channel Enhancement Mode Field Effect Transistor

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

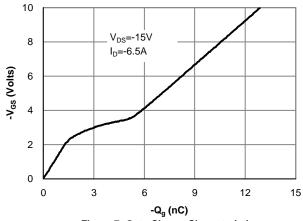


Figure 7: Gate-Charge Characteristics

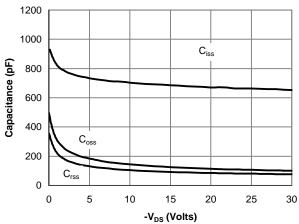


Figure 8: Capacitance Characteristics

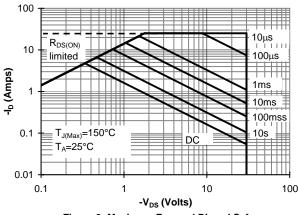
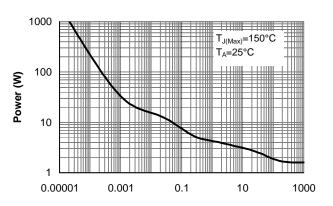



Figure 9: Maximum Forward Biased Safe Operating Area (Note E)

Pulse Width (s)
Figure 10: Single Pulse Power Rating Junction-to
Ambient (Note E)

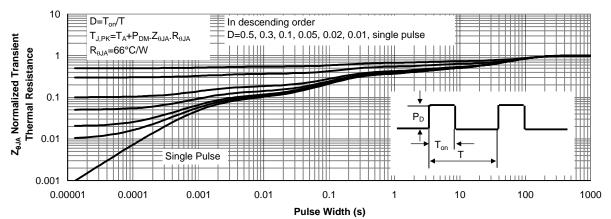


Figure 11: Normalized Maximum Transient Thermal Impedance(Note E)