
Rev. 0.1 3/12 Copyright © 2012 by Silicon Laboratories AN678

AN678

PRECISION32™ SI32FLASHUTILITY COMMAND-LINE
PROGRAMMER USER’S GUIDE

1. Introduction

The Precision32™ si32FlashUtility Command-Line Programmer is a simple program to enable production
programming capability using the Silicon Labs 32-bit USB Debug Adapter. This utility can also program and erase
lock bytes.

Figure 1 shows an invocation of the command-line utility.

Figure 1. Precision32 si32FlashUtility Command-Line Programmer

2. Relevant Documentation

Precision32 Application Notes are listed on the following website: www.silabs.com/32bit-appnotes.

AN667: Getting Started with the Silicon Labs Precision32™ IDE

AN669: Integrating Silicon Labs SiM3xxxx Devices into the Keil µVision® IDE

www.silabs.com/32bit-appnotes

AN678

2 Rev. 0.1

3. Programming Options

The si32FlashUtlility has a command-line form of:

si32FlashUtility [-options] [drive:][path]image

These options consist of the following:

-v: Verify the image after downloading to Flash.

-i: Display additional information during the programming process (i.e., verbose mode).

-e {0,1,2}: Erase Flash with three mode options.

-p {0,1,2}: Debug port selection with three mode options.

-r {0,1,2}: Reset during programming with three mode options.

-l: List the available USB Debug Adapters (UDAs).

-s SERIAL: Specify the USB Debug Adapter serial string.

This section discusses each of these programming options in more detail.

3.1. Download Verification
Using the -v option flag causes the si32FlashUtility to verify the Flash contents after the download. The command-
line utility will output a Download complete and verified message if the Flash contents match the HEX image.

3.2. Verbose Feedback
With the -i option flag, the si32FlashUtility programmer will report feedback about each step of the programming
process, as shown in Figure 2.

Figure 2. Verbose Mode Output

AN678

Rev. 0.1 3

3.3. Flash Erase
The -e option flag has three modes: merge, sector, and full. The default option is sector (-e 1) if no option is
specified.

The merge option is selected with -e 0 and causes the programmer to read the current contents of the Flash page
selected by the HEX file address, copy any contents that are not written in the HEX image, erase the page, and
write the merged image back to Flash. This option allows developers to maintain any calibration or code constants
in Flash when updating code.

When using the -e 1 sector erase option, the programmer will first erase the page selected by the HEX image
address before programming the contents of the HEX image.

The final option, -e 2, causes the programmer to erase the entire Flash before programming the HEX image.

3.4. Debug Port
This option selects the debug port of the device. The -p 0 selection is for any devices with JTAG debug pins. The
-p 1 option is for devices with Serial Wire debug pins only (SW-DP). The -p 2 option uses the Serial Wire protocol
and is for devices with both JTAG and Serial Wire debug pins (SWJ-DP), like the SiM3U1xx device family. The
default option is -p 2 if no option is specified.

The JTAG selection (-p 0) does not have provisions for JTAG chaining.

3.5. Reset Options
The utility supports three different reset options: none, before, and during. The default option is none (-r 0) if no
option is specified.

The none option (-r 0) prevents the utility from toggling the reset pin at any point during the programming process.

The before option (-r 1) allows the si32FlashUtility to toggle reset immediately before programming. This option is
useful for SiM3U1xx or SiM3C1xx devices that may be unresponsive due to switching to a non-existent clock.
Using this option along with the recommended reset delay in the startup code ensures the USB Debug Adapter will
be able to communicate with the device.

For the during option (-r 2), the utility asserts the reset pin while attempting to halt the core. Once the core is halted,
the utility deasserts the reset pin and starts programming. This option ensures the Debug Adapter can always
communicate with a device without the reset delay in the startup code for devices that support this feature.

Note: The -r 2 option is unavailable for SiM3U1xx and SiM3C1xx devices.

3.6. USB Debug Adapter Options
The -l option flag lists the available USB Debug Adapters connected to the PC or system. The -s SERIAL option
flag can then specify the USB Debug Adapter the utility should use for programming.

AN678

4 Rev. 0.1

4. Creating HEX Files with the Precision32 IDE

The si32FlashUtility programmer expects HEX files as its input, and the Precision32 IDE includes a utility that can
convert the GCC AXF file output to HEX files. This objcopy utility can be found in the
..\Precision32_vx.y\IDE\precision32\Tools\arm-none-eabi\bin path after installing the Precision32 software
package from www.silabs.com/32bit-software.

More information on the usage of this utility can be found on the CodeRed website: http://support.code-red-
tech.com/CodeRedWiki/OutputFormats.

4.1. Using the Objcopy Utility from the IDE
To use the objcopy utility from the IDE:

1. Hold the Ctrl button and left-click on the project name in the IDE footer as shown in Figure 3. This will
open a command prompt in the project directory with the proper paths to use the utility.

Figure 3. Opening a Project Command Prompt

2. Type cd build_directory, where build_directory is Debug by default.

3. Invoke the utility: arm-none-eabi-objcopy -O ihex project_name.axf project_name.hex. In the case of
this example, which uses the sim3u1xx_Blinky project: arm-none-eabi-objcopy -O ihex
sim3u1xx_Blinky.axf sim3u1xx_Blinky.hex.

www.silabs.com/32bit-software
www.silabs.com/32bit-software
http://support.code-red-tech.com/CodeRedWiki/OutputFormats

AN678

Rev. 0.1 5

Figure 4. Invoking the Objcopy Utility

4.2. Setting the IDE Project to Automatically Generate a HEX File
To configure the Precision32 IDE project to automatically generate a HEX file after a build:

1. Right-click on the project_name in the Project Explorer view.

2. Select Properties.

3. In the C/C++ BuildSettingsBuild Steps tab, type the following in the Post-build stepsCommand
box: arm-none-eabi-objcopy -O ihex ${BuildArtifactFileName} ${BuildArtifactFileBaseName}.hex

Figure 5. Automatically Generating a HEX File on Project Build

AN678

6 Rev. 0.1

5. Examples

To verify the download of the sim3u1xx_Blinky.hex file:

si32FlashUtility -v sim3u1xx_Blinky.hex

This example is shown in Figure 6.

Figure 6. Example with Flash Verification

To verify the download of the sim3u1xx_Blinky.hex file, use verbose mode, erase the device before the download,
and reset before:

si32FlashUtility -v -i -e 2 -r 1 sim3u1xx_Blinky.hex

Figure 7 shows an example of this call to the si32FlashUtility programmer.

Figure 7. Example with Flash Verification, Verbose Mode, Full Device Erase, and Reset Before
Options

AN678

Rev. 0.1 7

NOTES:

AN678

8 Rev. 0.1

CONTACT INFORMATION
Silicon Laboratories Inc.

400 West Cesar Chavez
Austin, TX 78701
Tel: 1+(512) 416-8500
Fax: 1+(512) 416-9669
Toll Free: 1+(877) 444-3032

Please visit the Silicon Labs Technical Support web page:
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx
and register to submit a technical support request.

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

https://www.silabs.com/support/pages/contacttechnicalsupport.aspx

