

SW1305A

$3.5 \times 3.5 \mathrm{~mm}(\mathrm{~h}=1.6 \mathrm{~mm})$ Type White LED

Features

$\left.\begin{array}{|l|l|}\hline \text { Package } & 3.5 \times 3.5 \mathrm{~mm}(\mathrm{~h}=1.6 \mathrm{~mm}) \text { Type, Water clear resin } \\ \hline \text { Product features } & \begin{array}{l}\text { - Outer Dimension } 3.5 \times 3.5 \times 1.6 \mathrm{~mm}(\mathrm{~L} \times \mathrm{W} \times \mathrm{H}) \\ \text { - Temperature range } \\ \text { Storage Temperature }:-40^{\circ} \mathrm{C} \sim 100^{\circ} \mathrm{C} \\ \text { Operating Temperature }:-30^{\circ} \mathrm{C} \sim 85^{\circ} \mathrm{C}\end{array} \\ \text { - Lead-free soldering compatible } \\ \text {-RoHS compliant }\end{array}\right]$

Spatial distribution	52 deg.
Die materials	InGaN
Optical efficiency	$68 \mathrm{Im} / \mathrm{W}$
Rank grouping parameter	Sorted by luminous intensity and chromaticity per rank taping
Assembly method	Reflow soldering and manual soldering
Soldering methods	1,000 pcs per reel in a 12 mm width tape. (Standard) Taping and reel
ESD	1 kV (HBM)

Recommended Applications

Cellular Phone, Mobile Equipment, Electric Household Appliances, Other General Applications

Ph-free
SW1305A
HEAT
$3.5 \times 3.5 \mathrm{~mm}(\mathrm{~h}=1.6 \mathrm{~mm})$ Type White LED

Color and Luminous Intensity

Part No.	Material	Emitted Color	Lens Color	Luminous Intensity Iv (mcd)			Luminous Flux$\phi v(\operatorname{lm})$	
				MIN.	TYP.	I_{F}	TYP.	I_{F}
S W1305A	InGaN	White	Water Clear	8,500	13,000	20/chip	13	20/chip

※Note : The above luminous intensity $\left(\mathrm{I}_{\mathrm{v}}\right)$ is the setup values of the sorting machine.
(Tolerance : $I_{V} \ldots \pm 10 \%$)

Item	Symbol	Absolute Maximum Ratings	Unit
Power Dissipation	$\mathbf{P}_{\text {d }}$	225(3chips)	mW
		75(1 chip)	
Forward Current	I_{F}	20(1 chip)	mA
Pulse Forward Current ${ }^{*}$	$\mathrm{I}_{\text {FRM }}$	100(1 chip)	mA
$\begin{gathered} \text { Derating }{ }^{※ 2} \\ \left(\mathrm{Ta}=60^{\circ} \mathrm{C}\right. \text { or higher) } \end{gathered}$	$\Delta \mathrm{I}_{\mathrm{F}}$	0.5	mA/ ${ }^{\circ} \mathrm{C}$
	$\Delta \mathbf{I}_{\text {FRM }}$	2.5	mA/ ${ }^{\circ} \mathrm{C}$
Reverse Voltage	V_{R}	5(1chip)	V
Operating Temperature	$\mathrm{T}_{\text {opr }}$	$-30 \sim+85$	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	$-40 \sim+100$	${ }^{\circ} \mathrm{C}$

※1 $\mathrm{I}_{\text {FRM }}$ Measurement condition: Pulse Width $\leqq 1 \mathrm{~ms}$, Duty $\leqq 1 / 20$
$※ 2$ Three dies are lit simultaneously.

HEAT
$3.5 \times 3.5 \mathrm{~mm}(\mathrm{~h}=1.6 \mathrm{~mm})$ Type White LED

Item	Condition	Symbol	Characteristics		Unit
Forward Voltage	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} / 1 \mathrm{chip}$	V_{F}	TYP.	3.2	V
			MAX.	3.6	
Reverse Current	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V} / 1 \mathrm{chip}$	I_{R}	MAX	100	$\mu \mathrm{A}$
Half Intensity Angle	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} / 1 \mathrm{chip}$	$2 \theta 1 / 2$	TYP.	52	deg.
Chromaticity Coordinates	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} / 1 \mathrm{chip}$	\mathbf{x}	TYP.	0.34	-
		y	TYP.	0.34	-

SW1305A

$3.5 \times 3.5 \mathrm{~mm}(\mathrm{~h}=1.6 \mathrm{~mm})$ Type White LED

Intensity Tolerance each Rank : +/-10\%

Rank	$\mathrm{I}_{\mathrm{V}}(\mathrm{mcd})$		Condition
	MIN.	MAX.	
DZ	8,500	10,000	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} / 1 \mathrm{chip}$
E 1	10,000	12,000	
E 2	12,000	15,000	
E 3	15,000	18,000	

※Please contact our sales staff concerning rank designation.
$3.5 \times 3.5 \mathrm{~mm}(\mathrm{~h}=1.6 \mathrm{~mm})$ Type White LED

Sorting Chart for Chromaticity Coordinates

Chromaticity Coordinates Tolerance Each Rank : +/-0.02

	LEFT DOWN point		LEFT UP point		RIGHT UP point		RIGHT UP point	
Rank	\mathbf{x}	y	x	y	x	y	x	y
4 A	0.3305	0.2595	0.2915	0.3065	0.3045	0.3265	0.3135	0.2795
$4 B$	0.3135	0.2795	0.3045	0.3265	0.3175	0.3465	0.3265	0.2995
$4 C$	0.3265	0.2995	0.3175	0.3465	0.3305	0.3665	0.3395	0.3195
4 C	0.3395	0.3195	0.3305	0.3665	0.3435	0.3865	0.3525	0.3395
$4 E$	0.3525	0.3395	0.3435	0.3865	0.3565	0.4065	0.3655	0.3595
$4 F$	0.3655	0.3595	0.3565	0.4065	0.3695	0.4265	0.3785	0.3795

※ Please contact our sales staff concerning rank designation.

Technical Data

Technical Data

Technical Data

Pulse Width vs. Maximum Tolerable Peak Current Condition: $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Pulse Width : tw ($\mu \mathrm{s}$)

Ph-free
SW1305A
HEAT
$3.5 \times 3.5 \mathrm{~mm}(\mathrm{~h}=1.6 \mathrm{~mm})$ Type White LED

Technical Data

Recommended Soldering Pattern

Taping Specification

- Quantity: 1,000pcs/ reel (standard)

Reflow Soldering Conditions

1) The above protile temperature gives the maximum temperature of the LED resin surface. Please set the temperature so as to avoid exceeding this range.
2) Total times of reflow soldering process shall be no more than 2 times.

When the second reflow soldering process is performed, intervals between the first and second reflow should be short as possible (while allowing some time for the component to return to normal temperature after the first reflow) in order to prevent the LED from absorbing moisture.

Manual Soldering Conditions

Iron tip temp.	$350{ }^{\circ} \mathrm{C}$	(MAX.)
Soldering time and frequency	3 s	(MAX.)
	1 time	(MAX.)

Reliability Testing Result

Reliability Testing Result	Applicable Standard	Testing Conditions	Duration	Failure
Room Temp. Operating Life	$\begin{gathered} \text { EIAJ ED- } \\ 4701 / 100(101) \end{gathered}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{IF}=20 \mathrm{~mA} / 1 \mathrm{chip}$	500 h	0/24
High Temp. Operating Life	$\begin{gathered} \text { EIAJ ED- } \\ 4701 / 100(101) \end{gathered}$	$\mathrm{Ta}=85^{\circ} \mathrm{C}, \mathrm{lF}=5 \mathrm{~mA} / 1$ chip	500 h	0/24
Low Temp. Operating Life	EIAJ ED4701/100(101)	$\mathrm{Ta}=-30^{\circ} \mathrm{C}, \mathrm{IF}=20 \mathrm{~mA} / 1 \mathrm{chip}$	500 h	0/24
Wet High Temp. Operating Life	$\begin{gathered} \text { EIAJ ED- } \\ 4701 / 100(102) \end{gathered}$	$\mathrm{Ta}=60^{\circ} \mathrm{C}, 90 \%, \mathrm{FF}=20 \mathrm{~mA} / 1 \mathrm{chip}$	500 h	0/24
Wet High Temp. Storage Life	EIAJ ED4701/100(103)	$\mathrm{Ta}=60^{\circ} \mathrm{C}, 90 \%$	1,000 h	0/24
Thermal Shock	$\begin{gathered} \text { EIAJ ED- } \\ 4701 / 100(105) \end{gathered}$	$\mathrm{Ta}=-40^{\circ} \mathrm{C} \sim 100^{\circ} \mathrm{C}$ (each 15 min.$\left.\right)$	200 cycles	0/24
High Temp. Storage Life	$\begin{gathered} \text { EIAJ ED- } \\ 4701 / 200(201) \end{gathered}$	$\mathrm{Ta}=100^{\circ} \mathrm{C}$	1,000 h	0/24
Low Temp. Storage Life	$\begin{gathered} \text { EIAJ ED- } \\ 4701 / 200(202) \end{gathered}$	$\mathrm{Ta}=-40^{\circ} \mathrm{C}$	1,000 h	0/24
Cycled Temp. Humidity Life	$\begin{gathered} \text { EIAJ ED- } \\ 4701 / 200(203) \end{gathered}$	$\mathrm{Ta}=-10^{\circ} \mathrm{C} \sim 65^{\circ} \mathrm{C}, 95 \%, 24 \mathrm{~h} /$ cycle	10 cycles	0/24
Resistance to Reflow Soldering	$\begin{gathered} \text { EIAJ ED- } \\ 4701 / 300(301) \end{gathered}$	Preheat : $150 \sim 180^{\circ} \mathrm{C}$ (120s Max.) Soldering Temp. : $260^{\circ} \mathrm{C}(5 \mathrm{~s})$ Moisture Soak : $30^{\circ} \mathrm{C}, 70 \%$, 72 h	Twice	0/24
Electric Static Discharge (ESD)	EIAJ ED- 4701/300(304)	$\mathrm{C}=100 \mathrm{pF}, \mathrm{R} 2=1.5 \mathrm{~K} \Omega, \pm 1,000 \mathrm{~V}$	once each polarity	0/24
Vibration, Variable Frequency	EIAJ ED- 4701/400(403)	$98.1 \mathrm{~m} / \mathrm{s}^{2}(10 \mathrm{G}), 100 \sim 2 \mathrm{KHz}, 20 \mathrm{~min}$, XYZ each direction	2 h	0/12

Failure Criteria

Items	Symbols	Conditions	Failure criteria
Luminous Intensity	IV	$\mathrm{IF}=20 \mathrm{~mA} / 1$ chip	Testing Min. Value $<$ Spec. Min. Value $\times 0.5$
Forward Voltage	VF	$\mathrm{IF}=20 \mathrm{~mA} / 1$ chip	Testing Max. Value \geqq Spec. Max. Value $\times 1.2$
Reverse Current	IR	$\mathrm{V}_{\mathrm{R}=5 \mathrm{~V} / 1 \text { chip }}$	Testing Max. Value \geqq Spec. Max. Value $\times 2.5$
Cosmetic Appearance	-	-	Occurrence of notable decoloration, deformation and cracking

Special Notice to Customers Using the Products and Technical Information Shown in This Data Sheet

1) The technical information shown in the data sheets are limited to the typical characteristics and circuit examples of the referenced products. It does not constitute the warranting of industrial property nor the granting of any license.
2) For the purpose of product improvement, the specifications, characteristics and technical data described in the data sheets are subject to change without prior notice. Therefore it is recommended that the most updated specifications be used in your design.
3) When using the products described in the data sheets, please adhere to the maximum ratings for operating voltage, heat dissipation characteristics, and other precautions for use. We are not responsible for any damage which may occur if these specifications are exceeded.
4) The products that have been described to this catalog are manufactured so that they will be used for the electrical instrument of the benchmark (OA equipment, telecommunications equipment, $A V$ machine, home appliance and measuring instrument).
The application of aircrafts, space borne application, transportation equipment, medical equipment and nuclear power control equipment, etc. needs a high reliability and safety, and the breakdown and the wrong operation might influence the life or the human body. Please consult us beforehand if you plan to use our product for the usages of aircrafts, space borne application, transportation equipment, medical equipment and nuclear power control equipment, etc. except OA equipment, telecommunications equipment, AV machine, home appliance and measuring instrument.
5) In order to export the products or technologies described in this data sheet which are under the "Foreign Exchange and Foreign Trade Control Law," it is necessary to first obtain an export permit from the Japanese government.
6) No part of this data sheet may be reprinted or reproduced without prior written permission from Stanley Electric Co., Ltd.
7) The most updated edition of this data sheet can be obtained from the address below: http://www.stanley-components.com
