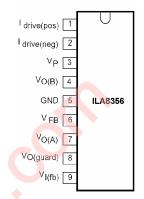
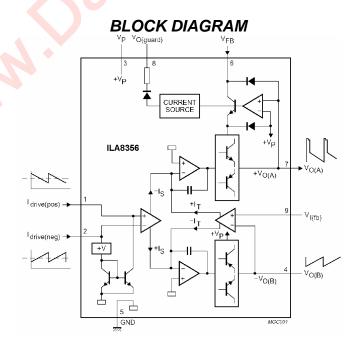
ww.DataSheet4U.com


DC-coupled vertical deflection circuit

The ILA8356 is a power circuit for use in 90° and 110° colour deflection systems for field frequencies of 50 to 120 Hz. The circuit provides a DC driven vertical deflection output circuit, operating as a highly efficient class G system.

FEATURES


- Few external components
- Highly efficient fully DC-coupled vertical output bridge circuit
- Vertical flyback switch
- Guard circuit
- Protection against:
- short-circuit of the output pins (7 and 4)
- short-circuit of the output pins to V_P
- Temperature (thermal) protection
- High EMC immunity because of common mode inputs

A guard signal in zoom mode

PINNING

SYMBOL	PIN	DESCRIPTION
I _{drive(pos)}	1	input power-stage (positive); includes I _{l(sb)} signal bias
I _{drive(neg)}	2	input power-stage (negative);includes l _{l(sb)} signal bias
V_{P}	3	operating supply voltage
$V_{O(B)}$	4	output voltage B
GND	5	ground
V_{FB}	6	input flyback supply voltage
$V_{O(A)}$	7	output voltage A
$V_{O(guard)}$	8	guard output voltage
$V_{l(fb)}$	9	input feedback voltage

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
DC supply	•		•		
V _P	supply voltage	9	4.5	25	V
l _q	quiescent supply current	~	30	~	mΑ
Vertical circu	iit				
¹ O(p-p)	output current	~	~	2	Α
	(peak-to-peak value)				
diff(p-p)	differential input current (peak-to-peak value)	~	600	~	μΑ
[∨] diff(p-p)	differential input voltage (peak-to-peak value)	~	1.5	1.8	V
Flyback swite	ch			•	
I _M	peak output current	~	~	<u>+</u> 1	Α
V_{FB}	flyback supply voltage	~	~	50	V
Thermal data					
T _{stg}	storage temperature	~55	~	+150	°C
T _{amb}	operating ambient temperature	~25	~	+75	°C
T _{vi}	virtual junction temperature	~	~	150	°C

FUNCTIONAL DESCRIPTION

The vertical driver circuit is a bridge configuration. The deflection coil is connected between the output amplifiers, which are driven in phase opposition. An external resistor (R_M) connected in series with the deflection coil provides internal feedback information. The differential input circuit is voltage driven. An external resistor (R_{CON}) connected between the differential input determines the output current through the deflection coil. The relationship between the differential input current and

the output current is defined by: $I_{diff} xR_{CON} = I_{coil} xR_M$ The output current is adjustable from 0.5 A (p-p) to 2 A (p-p) by varying R_M The maximum input differential voltage is 1.8 V. In the application it is recommended that $V_{diff} = 1.5 \text{ V}$ (typ). This is recommended because of the spread of input current and the spread in the value of R_{CON} . The flyback voltage is determined by an additional supply voltage V_{FB} . The principle of operating with two supply voltages (class G) makes it possible to fix the supply voltage V_P optimum for the scan voltage and the second supply voltage V_{FB} optimum for the flyback voltage. Using this method, very high efficiency is achieved.

The supply voltage V_{FB} is almost totally available as flyback voltage across the coil, this being possible due to the absence of a decoupling capacitor (not necessary, due to the bridge configuration). The output circuit is fully protected against the following:

- thermal protection
- short-circuit protection of the output pins (pins 4 and 7)
- short-circuit of the output pins to V_P.

A guard circuit V₀(guard) is provided. The guard circuit is activated at the following conditions:

- during flyback
- ullet during short-circuit of the coil and during short-circuit of the output pins (pins 4 and 7) to V_P or ground
- during open loop
- when the thermal protection is activated.

This signal can be used for blanking the picture tube screen.

LIMITING VALUES

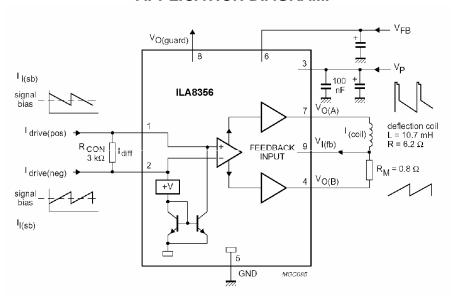
SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
DC supply	·		•		•
V _P	supply voltage	non-operating	~	40	V
			~	25	V
V_{FB}	flyback supply voltage		~	50	V
Vertical circ	uit				
$I_{O(p-p)}$	output current (peak-to-peak value)	note 1	~	2	Α
$V_{O(A)}$	output voltage (pin 7)		~	52	V
lyback swi	tch				
I _M	peak output current		~	<u>+</u> 1.5	Α
hermal dat	a				
T _{stg}	storage temperature		~55	+150	°C
T_{amb}	operating ambient temperature		[~] 25	+75	°C
T_{vi}	virtual junction temperature			150	°C
R ^{th vj-c}	resistance v _i -case			4	K/W
$R_{th vj-a}$	resistance v _i -ambient in free air			40	K/W
t _{sc}	short-circuiting time	note 2		1	hr

Notes

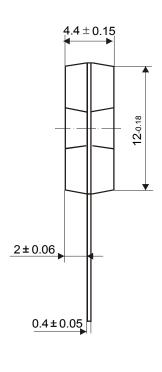
- 1. I_O maximum determined by current protection.
- 2. Up to $V_P = 18 \text{ V}$.

CHARACTERISTICS

 V_P = 14.5 V; T_{amb} = 25 C; V_{FB} = 45 V; fi = 50 Hz; $I_{I(sb)}$ = 400 A; unless otherwise specified.


SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
DC supply	•		•	•	•	•
V_P	operating supply voltage		9.0	4.5	25	V
V_{FB}	flyback supply voltage		V_P	~	50	V
l _P	supply current	no signal; no load	~	30	55	mA
Vertical circu	uit					
Vo	output voltage swing (scan)	$I_{\text{diff}} = 0.6 \text{ mA (p-p)};$ $V_{\text{diff}} = 1.8 \text{ V (p-p)};$ $I_{\text{O}} = 2 \text{ A (p-p)}$	13.2	~	~	V
LE	linearity error	$I_0 = 2 \text{ A (p-p)};$	~	1	4	%
		$I_0 = 50 \text{ mA (p-p)};$	~	1	4	%
Vo	output voltage swing (flyback) VO(A) -VO(B)	$I_{diff} = 0.3 \text{ mA};$ $I_{O} = 1 \text{ A (M)}$		40		V
V_{DF}	forward voltage of the internal efficiency diode (V _{O(A)} - V _{FB})	$I_O = 1 A (M);$ $I_{diff} = 0.3 \text{ mA}$	~	~	1.5	V
I _{os}	output offset current	$I_{\text{diff}} = 0;$ $I_{\text{I(sb)}} = 50 \text{ to } 500 \mu\text{A}$			40	mA
V _{os}	offset voltage at the input of the feedback amplifier $(V_{I(fb)} - V_{O(B)})$	$I_{\text{diff}} = 0;$ $I_{\text{l(sb)}} = 50 \text{ to } 500 \mu\text{A}$	~	~	24	mV
$\Delta V_{os}T$	output offset voltage as a function of temperature		~	~	72	μV/K
$V_{O(A)}$	DC output voltage	$I_{diff} = 0;$	~	6.5	~	V
G _{vo}	open-loop voltage gain (V ₇₋₄ /V ₁₋₂)		~	80	~	dB

	open loop voltage gain		~	80	~	dB
	$(V_{7-4}/V_{9-4}; V_{1-2} = 0)$					
V_R	voltage ratio V ₁₋₂ /V ₉₋₄		~	0	~	dB
f _{res}	frequency response (3 dB)	open loop;	~	40	~	Hz
Gı	current gain (I _O /I _{diff})		~	5000	~	
$\Delta G_c T$	current gain drift as a function of temperature				10 ⁻⁴	K
I _{I(sb)}	signal bias current		50	400	500	μΑ
I _{FB}	flyback supply current	during scan	~	~	100	μΑ
PSRR	power supply ripple rejection		~	80	~	dB
V _{I(DC)}	DC input voltage		~	2.7	~	V
$V_{I(CM)}$	common mode input voltage	$I_{l(sb)} = 0$	0	~	1.6	V
I _{bias}	input bias current	$I_{l(sb)} = 0$	~	0.1	0.5	μΑ
I _{O(CM)}	common mode output current	$\Delta I_{l(sb)} = 300 \ \mu A \ (p-p);$	~	0.2	~	mA
		$f_i = 50 \text{ Hz}; I_{diff} = 0$				
Guard circu	it					
Io	output current	not active;	~		50	μА
		$V_{O(quard)} = 0 V$ active; $V_{O(quard)} = 4.5 V$	1	~	2.5	mA
V _{O(guard)}	output voltage on pin 8	$I_O = 100 \mu\text{A}$	~	~	5.5	V
- Jgddid)	allowable voltage on pin 8	maximum leakage current = 10 μA;	~	~	40	V


 $V_{P} = 13.5 \text{ V; } I_{O(p\text{-}p)} = 1.87 \text{ A; } I_{I(sb)} = 400 \text{ } \mu\text{A; } I_{diff(p\text{-}p)} = 500 \text{ } \mu\text{A; } V_{FB} = 42 \text{ V; } t_{FB} = 0.6 \text{ ms.}$

APPLICATION DIAGRAM.

• 9-Pin Plastic Power Single-in-Line (SIL-9MPF, SOT 131-2)

