

May 2012

FJP2160D ESBCTM Rated NPN Silicon Transistor

Applications

- · High Voltage and High Speed Power Switch Application
- Emitter-Switched Bipolar/MOSFET Cascode Application (ESBCTM)
- · Smart Meter, Smart Breakers. **HV Industrial Power Supplies**
- · Motor Driver and Ignition Driver

ESBC Features (FDC655 MOSFET)

V _{CS(ON)}	I _C Equiv R _{CS(ON}	
0.131 V	0.5 A	0.261 Ω *

- · Low Equivalent On Resistance
- Very Fast Switch: 150KHz
- · Squared RBSOA: Up to 1600Volts
- · Avalanche Rated
- Low Driving Capacitance, no Miller Capacitance (Typ 12pF Cap @ 200volts)
- · Low Switching Losses
- · Reliable HV switch: No False Triggering due to High dv/dt Transients.

Description

The FJP2160D is a low-cost, high performance power switch designed to provide the best performance when used in an ESBCTM configuration in applications such as: power supplies, motor drivers, Smart Grid, or ignition switches. The power switch is designed to operate up to 1600 volts and up to 3amps while providing exceptionally low on-resistance and very low switching losses.

The ESBCTM switch is designed to be easy to drive using off-the-shelf power supply controllers or drivers. The ESBCTM MOSFET is a low-voltage, low-cost, surface mount device that combines low-input capacitance and fast switching, The ESBCTM configuration further minimizes the required driving power because it does not have Miller capacitance.

The FJP2160D provides exceptional reliability and a large operating range due to its square reverse-bias-safeoperating-area (RBSOA) and rugged design. The device is avalanche rated and has no parasitic transistors so is not prone to static dv/dt failures.

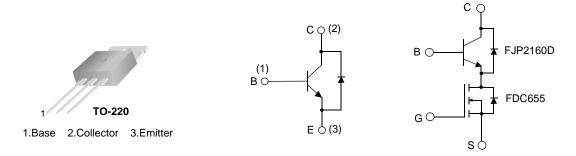


Figure 2. Internal Schematic Diagram Figure 3. ESBC Configuration** Figure 1. Pin Configuration

Ordering Information

Part Number	Marking	Package	Packing Method	Remarks
FJP2160DTU	J2160D	TO-220	TUBE	

^{*} Figure of Merit

^{**} Other Fairchild MOSFETs can be used in this ESBC application.

Absolute Maximum Ratings * $T_a = 25$ °C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CBO}	Collector-Base Voltage	1600	V
V _{CEO}	Collector-Emitter Voltage	800	V
V _{EBO}	Emitter-Base Voltage	12	V
I _C	Collector Current	2	Α
I _{CP}	Collector Current (Pulse)	3	Α
I _B	Base Current	1	Α
I _{BP}	Base Current (Pulse)	2	Α
P_{D}	Power Dissipation (T _C = 25°C)	100	W
T_J	Operating and Junction Temperature Range	- 55 ~ +125	°C
T _{STG}	Storage Temperature Range	- 65 ~ + 150	°C
EAS	Avalanche Energy (T _J = 25°C, 8mH)	3.5	mJ

^{*} Pulse Test: Pulse Width = $20\mu s$, Duty Cycle $\leq 10\%$

Thermal Characteristics $T_a = 25$ °C unless otherwise note

Symbol	Parameter	Max.	
$R_{ hetajc}$	Thermal Resistance, Junction to Case	1.25	°C/W
$R_{\theta ja}$	Thermal Resistance, Junction to Ambient	80	°C/W

Electrical Characteristics $T_a = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
BV _{CBO}	Collector-Base Breakdown Voltage	$I_C=0.5$ mA, $I_E=0$	1600	1689		V
BV _{CEO}	Collector-Emitter Breakdown Voltage	I _C =5mA, I _B =0	800	870		V
BV _{EBO}	Emitter-Base Breakdown Voltage	$I_E=0.5$ mA, $I_C=0$	12	14.8		V
I _{CES}	Collector Cut-off Current	V _{CES} =1600V, I _E =0		0.01	100	μΑ
I _{CEO}	Collector Cut-off Current	V _{CE} =800V, V _{BE} =0		0.01	100	μΑ
I _{EBO}	Emitter Cut-off Current	V _{EB} =12V, I _C =0		0.05	500	μΑ
h _{FE}	DC Current Gain	V_{CE} =3V, I_{C} =0.4A	20	29	35	
		V _{CE} =10V, I _C =5mA	20	43		
V _{CE} (sat)	Collector-Emitter Saturation Voltage	I _C =0.25A, I _B =0.05A		0.16	0.45	V
		I _C =0.5A, I _B =0.167A		0.12	0.35	V
		I _C =1A, I _B =0.33A		0.25	0.75	V
V _{BE} (sat)	Base-Emitter Saturation Voltage	I _C =500mA, I _B =50mA		0.74	1.2	V
		I _C =2A, I _B =0.4A		0.85	1.2	V
C _{ib}	Input Capacitance	V_{EB} =10V, I_{C} =0, f=1MHz		745	1000	pF
C _{ob}	Output Capacitance	V_{CB} =200V, I_E =0, f=1MHz		15		pF
f _T	Current Gain Bandwidth Product	I _C =0.1A,V _{CE} =10V		5		MHz
V _F	Diode Forward Voltage	I _F =0.4A		0.76	1.2	V
		I _F =1A		0.83	1.5	V

ESBC Configured Electrical Characteristics * $T_a = 25$ °C unless otherwise noted

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
f _T	Current Gain Bandwidth Product	I _C =0.1A,V _{CE} =10V		25		MHz
lt _f	Inductive Current Fall Time	V_{GS} =10V, R_{G} =47 Ω ,		137		ns
t _s	Inductive Storage Time	V _{Clamp} =500V,		350		ns
Vt _f	Inductive Voltage Fall Time	$t_p = 3.1 \mu s$, $I_C = 0.3 A$,		120		ns
Vt _r	Inductive Voltage Rise Time	I _B =0.03A, L _C =1mH,		100		ns
t _c	Inductive Crossover Time	SRF=480KHz		137		ns
lt _f	Inductive Current Fall Time	V_{GS} =10V, R_{G} =47 Ω ,		35		ns
t _s	Inductive Storage Time	V _{Clamp} =500V,		980		ns
Vt _f	Inductive Voltage Fall Time	$t_p = 10 \mu s, I_C = 1A,$		30		ns
Vt _r	Inductive Voltage Rise Time	$I_B=0.2A$, $L_C=1mH$,		195		ns
t _c	Inductive Crossover Time	SRF=480KHz		210		ns
V _{CSW}	Maximum Collector Source Voltage at Turn-off without Snubber	h _{FE} =5, I _C =2A	1600			V
I _{GS(OS)}	Gate-Source Leakage Current	V _{GS} =±20V		1.0		nA
V _{CS(ON)}	Collector-Source On Voltage	$\begin{array}{c} V_{GS}{=}10V,\ I_{C}{=}2A,\ I_{B}{=}0.67A,\ h_{FE}{=}3\\ V_{GS}{=}10V,\ I_{C}{=}1A,\ I_{B}{=}0.33A,\ h_{FE}{=}3\\ V_{GS}{=}10V,\ I_{C}{=}0.5A,I_{B}{=}0.17A,h_{FE}{=}3\\ V_{GS}{=}10V,\ I_{C}{=}0.3A,\ I_{B}{=}0.06A,\ h_{FE}{=}5\\ \end{array}$		2.21 0.321 0.131 0.166		V V V
V _{GS(th)}	Gate Threshold Voltage	$V_{BS}=V_{GS}$, $I_{B}=250\mu A$		1.9		V
C _{iss}	Input Capacitance (V _{GS} =V _{CB} =0)	V _{CS} =25V, f=1MHz		470		pF
Q _{GS(tot)}	Gate-Source Change V _{CB} =0	V _{GS} =10V, I _C =8A, V _{CS} =25V		9		nC
r _{DS(ON)}	Static Drain to Source On Resistance	$\begin{aligned} &V_{GS}\text{=}10\text{V, }I_{D}\text{=}6.3\text{A} \\ &V_{GS}\text{=}4.5\text{V, }I_{D}\text{=}5.5\text{A} \\ &V_{GS}\text{=}10\text{V, }I_{D}\text{=}6.3\text{A, }T_{J}\text{=}125^{\circ}\text{C} \end{aligned}$		21 26 30		$m\Omega$ $m\Omega$ $m\Omega$

^{*} Used typical FDC655 MOSFET values in table. Could vary if other Fairchild MOSFETs were used.

Typical Performance Characteristics

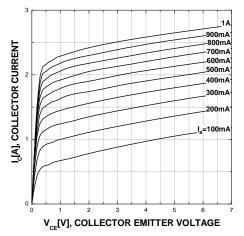


Figure 4. Static Characteristic

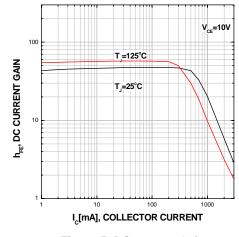


Figure 5. DC current Gain

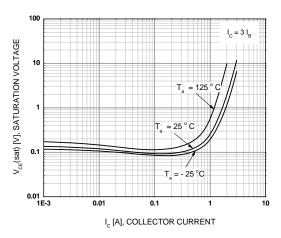


Figure 6. Collector-Emitter Saturation Voltage h_{FE} =3

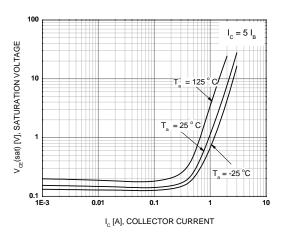


Figure 7. Collector-Emitter Saturation Voltage h_{FE} =5

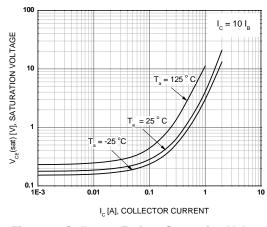


Figure 8. Collector-Emitter Saturation Voltage h_{FE} =10

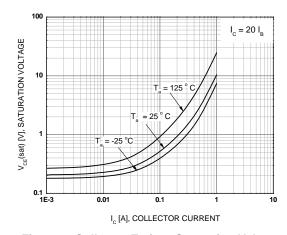


Figure 9. Collector-Emitter Saturation Voltage h_{FE} =20

Typical Performance Characteristics (Continued)

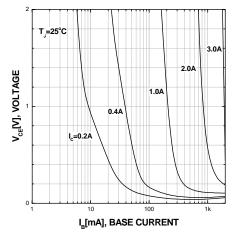


Figure 10. Typical Collector Saturation Voltage

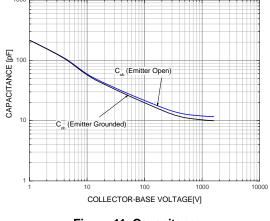


Figure 11. Capacitance

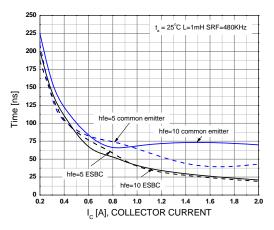


Figure 12. Inductive Load Collector Current Fall-time (t_f)

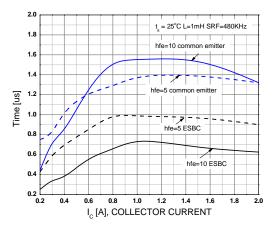


Figure 13. Inductive Load Collector Current Storage time (t_{stq})

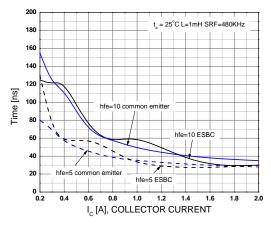


Figure 14. Inductive Load Collector Voltage Fall-time (t_f)

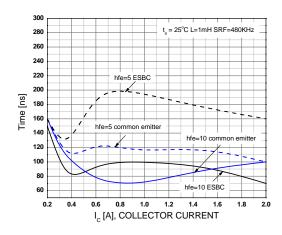


Figure 15. Inductive Load Collector Voltage Rise-time (t_r)

Typical Performance Characteristics (Continued)

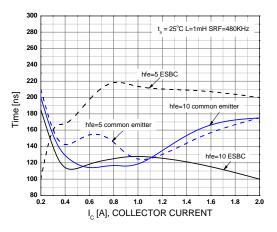


Figure 16. Inductive Load Collector Current/Voltage Crossover (t_c)

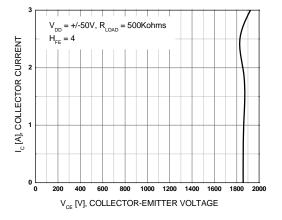


Figure 18. ESBC RBSOA

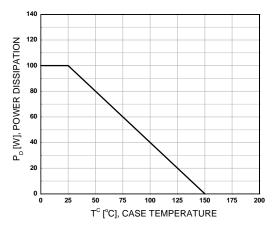


Figure 20. Power Derating

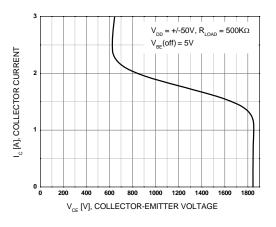


Figure 17. BJT Reverse Bias Safe Operating Area

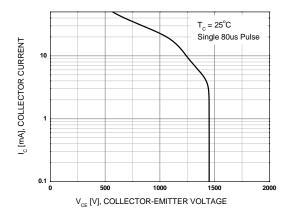


Figure 19. Crossover Forward Bias Safe Operating Area

Test Circuits

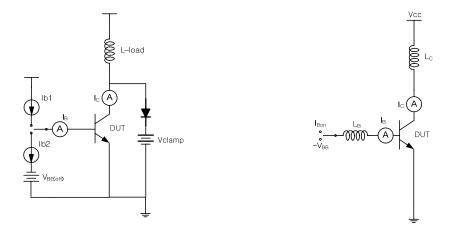


Figure 21. Test Circuit For Inductive Load and Reverse Bias Safe Operating

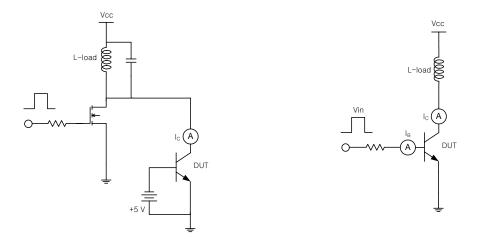


Figure 22. Energy Rating Test Circuit

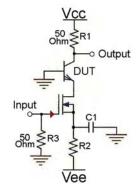


Figure 23. Ft Measurement

Figure 24. FBSOA

Test Circuits (Continued)

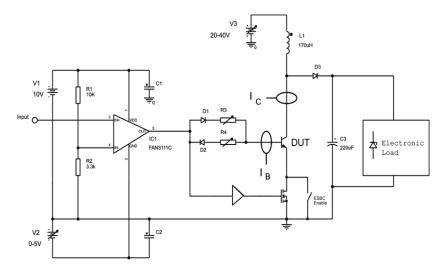


Figure 25. Simplified Saturated Switch Driver Circuit

Functional Test Waveforms

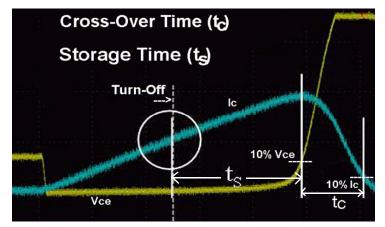


Figure 26. Crossover Time Measurement

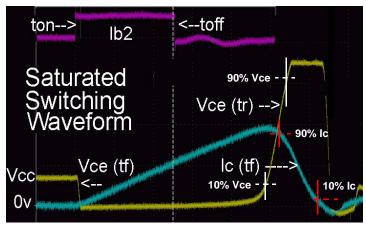


Figure 27. Saturated Switching Waveform

Functional Test Waveforms (Continued)

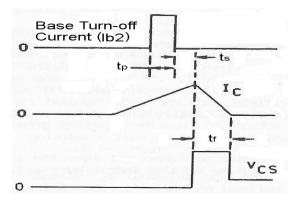


Figure 28. Storage Time - Common Emitter Base turn off (lb2) to Ic Fall-time

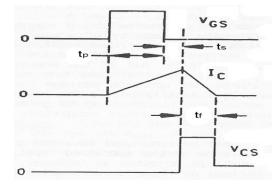
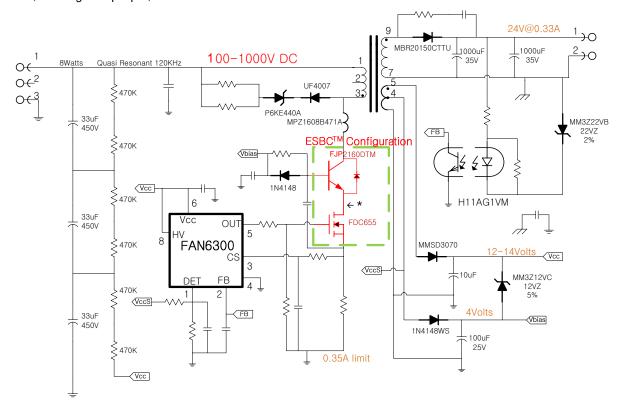



Figure 29. Storage Time - ESBC FET Gate (off) to Ic Fall-time

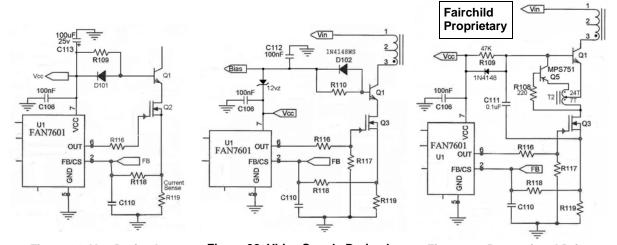
Very Wide Input Voltage Range Supply

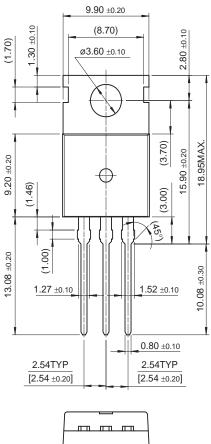
- 8watt; SecReg: 3 cap input; Quasi Resonant

* Make short as possible

Figure 30. Very Wide Input Voltage Range Supply

Driving ESBC Switches




Figure 31. Vcc Derived

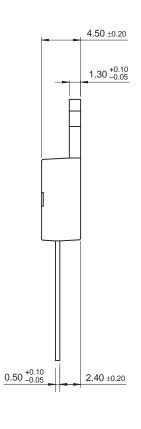

Figure 32. Vbias Supply Derived

Figure 33. Proportional Drive

Physical Dimensions

TO-220

10.00 ±0.20

Dimensions in Millimeters

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

 2Cool™
 F-PFS™

 AccuPower™
 FRFET®

 AX-CAP™*
 Global Power Resource®™

 BitSiC™
 GreenBridge™

 Build it Now™
 Green FPS™

 CorePLUS™
 Green FPS™ e-Series™

Current Transfer Logic™ ISOPLANAR™
DEUXPEED® Making Small Speakers Sound Louder
Dual Cool™ and Better™

Dual Cool™ and Better™

EcoSPARK® MegaBuck™

EfficientMax™ MICROCOUPLER™

ESBC™ MicroFET™

MicroPak™

Fairchild®
Fairchild Semiconductor®
FACT Quiet Series™
FACT®
FAST®
FastvCore™
FETRepohl™

FastvCore™ OPTOLOGIC®
FETBench™ OPTOPLANAR®
FlashWriter®*
FPS™

PowerTrench[®] PowerXS™

QFET®

Programmable Active Droop™

QS™ Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

GENERAL®*

The Power Franchise®

Franchise
TinyBoost™
TinyBuck™
TinyCalc™
TinyCogic®
TINYOPTO™
TinyPower™
TinyPWM™
TinyPWire™
TranSiC™
TriFault Detect™
TRUECURRENT®**

SerDes"
UHC®
Ultra FRFET™
UniFET™
VCX™
VisualMax™
VoltagePlus™
XS™

սSerDes™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

MicroPak2™

MillerDrive™

MotionMax™

mWSaver™

OptoHiT™

Motion-SPM™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a)
 are intended for surgical implant into the body or (b) support or
 sustain life, and (c) whose failure to perform when properly used in
 accordance with instructions for use provided in the labeling, can be
 reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. I61