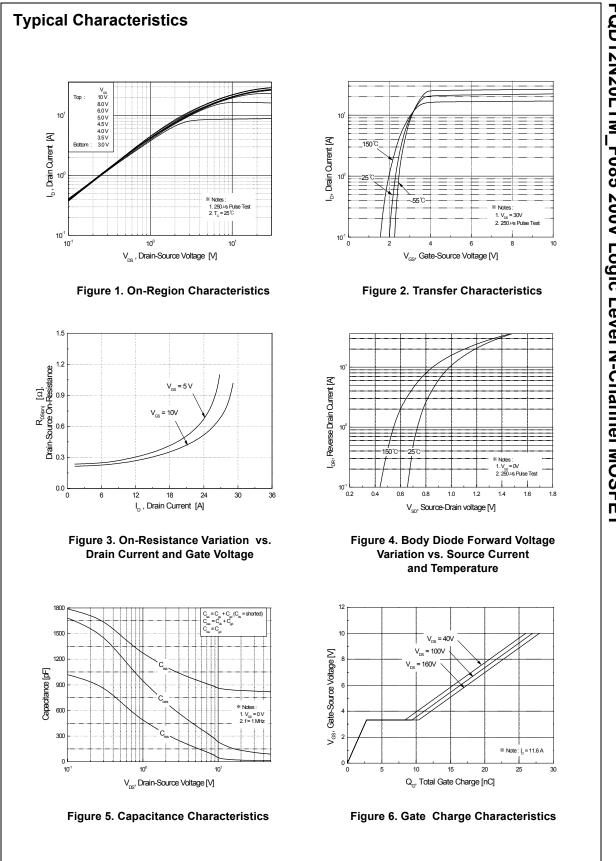
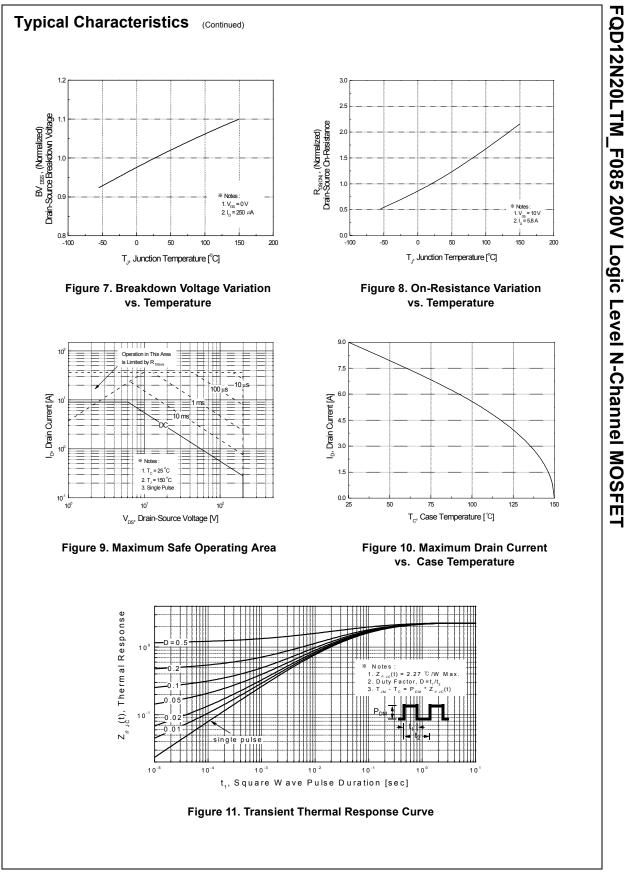
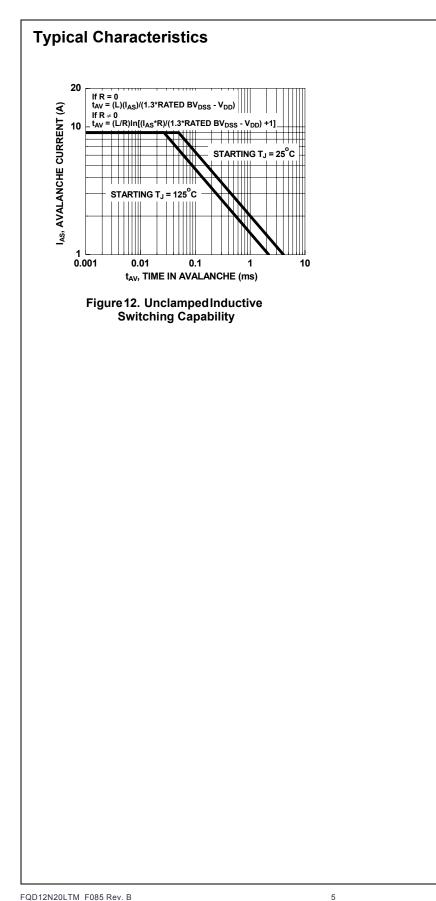
FAIRCHILD June 2010 SEMICONDUCTOR IM FQD12N20LTM F085 200V Logic Level N-Channel MOSFET **General Description** Features These N-Channel enhancement mode power field effect • 9.0A, 200V, $R_{DS(on)} = 0.28\Omega @V_{GS} = 10 V$ transistors are produced using Fairchild's proprietary, Low gate charge (typical 16 nC) planar stripe, DMOS technology. Low Crss (typical 17 pF) This advanced technology has been especially tailored to Fast switching minimize on-state resistance, provide superior switching · 100% avalanche tested performance, and withstand high energy pulse in the • Improved dv/dt capability avalanche and commutation mode. These devices are well • Low level gate drive requirement allowing direct suited for high efficiency switching DC/DC converters, opration from logic drivers switch mode power supply, motor control. Qualified to AEC Q101 **RoHS** Compliant D D D-PAK G S Absolute Maximum Ratings T_C = 25°C unless otherwise noted FQD12N20LTM_F085 Units Symbol Parameter V_{DSS} Drain-Source Voltage V 200 - Continuous ($T_C = 25^{\circ}C$) I_D A Drain Current 9.0 - Continuous ($T_C = 100^{\circ}C$) 5.7 А Drain Current I_{DM} - Pulsed (Note 1) 36 А V V_{GSS} Gate-Source Voltage ± 20 I_{AR} Avalanche Current (Note 1) 9.0 А dv/dt Peak Diode Recovery dv/dt V/ns (Note 2) 5.5 Power Dissipation ($T_A = 25^{\circ}C$) * 2.5 W PD Power Dissipation ($T_C = 25^{\circ}C$) 55 W - Derate above 25°C 0.44 W/°C T_J, T_{STG} Operating and Storage Temperature Range -55 to +150 °C Maximum lead temperature for soldering purposes, T_L 300 °C 1/8" from case for 5 seconds

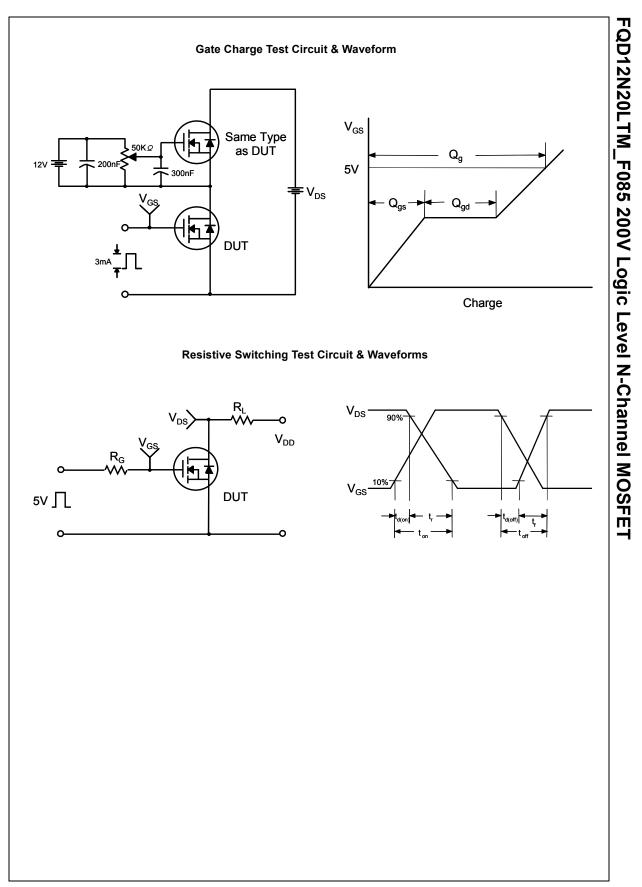

Thermal Characteristics

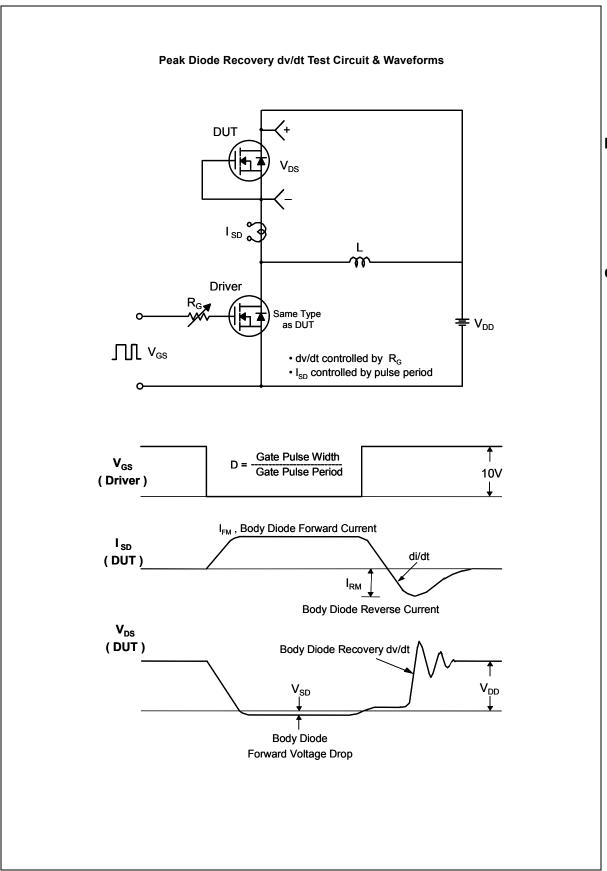
Symbol	Parameter	Тур	Мах	Units
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction-to-Case		2.27	°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction-to-Ambient *		50	°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction-to-Ambient		110	°C/W

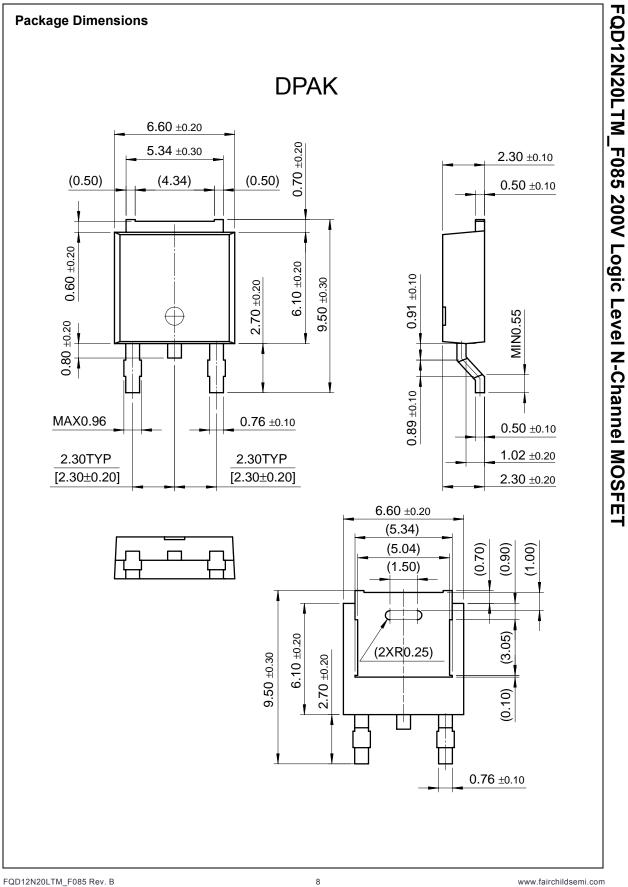

* When mounted on the minimum pad size recommended (PCB Mount)

FQD12N20LTM_F085 200V Logic Level N-Channel MOSFET


Symbol	Parameter	Test Conditions		Min	Тур	Max	Units
Off Cha	racteristics						
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} = 0 V, I _D = 250 μA		200			V
ΔBV _{DSS}	Breakdown Voltage Temperature Coefficient	$I_D = 250 \mu\text{A}$, Referenced	to 25°C		0.14		V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 200 V, V _{GS} = 0 V				1	μA
		V _{DS} = 160 V, T _C = 125°C				10	μA
GSSF	Gate-Body Leakage Current, Forward	V _{GS} = 20 V, V _{DS} = 0 V				100	nA
GSSR	Gate-Body Leakage Current, Reverse	V_{GS} = -20 V, V_{DS} = 0 V				-100	nA
On Cha	racteristics						
V _{GS(th)}	Gate Threshold Voltage	V _{DS} = V _{GS} , I _D = 250 μA		1.0		2.0	V
R _{DS(on)}	Static Drain-Source $V_{GS} = 10 \text{ V}, I_D = 4.5 \text{ A}$			-	0.22	0.28	0
D3(0II)	On-Resistance	$V_{GS} = 5 \text{ V}, \text{ I}_{D} = 4.5 \text{ A}$			0.25	0.32	Ω
ĴFS	Forward Transconductance	V _{DS} = 30 V, I _D = 4.5 A	(Note 3)		11.6		S
Dvnami	ic Characteristics						
C _{iss}	Input Capacitance	V _{DS} = 25 V, V _{GS} = 0 V, f = 1.0 MHz			830	1080	pF
C _{oss}	Output Capacitance				120	155	pF
C _{rss}	Reverse Transfer Capacitance				17	22	pF
	Turn-On Delay Time Turn-On Rise Time	V _{DD} = 100 V, I _D = 11.6 A,			15 190	40	ns
d(on)		V_{DD} = 100 V, I _D = 11.6 A, R _G = 25 Ω (Note 3, 4)					ns
r d(off)	Turn-Off Delay Time				60	390 130	ns ns
α(οπ) f	Turn-Off Fall Time				120	250	ns
$\hat{\lambda}_{g}$	Total Gate Charge				16	21	nC
ୁ ପୁ _{gs}	Gate-Source Charge	V _{DS} = 160 V, I _D = 11.6 A, V _{GS} = 5 V			2.8		nC
Q _{gd}	Gate-Drain Charge	(Note 3, 4)			7.6		nC
-	, in the second s	d Maximum Ratings	•				
s	Bource Diode Characteristics and Maximum Ratings Maximum Continuous Drain-Source Diode Forward Current					9.0	A
SM	Maximum Pulsed Drain-Source Diode F	Forward Current				36	Α
√ _{SD}	Drain-Source Diode Forward Voltage	V_{GS} = 0 V, I _S = 9.0 A				1.5	V
rr	Reverse Recovery Time	V_{GS} = 0 V, I _S = 11.6 A,			128		ns
2 _{rr}	Reverse Recovery Charge	dI _F / dt = 100 A/µs	(Note 3)		0.56		μC
I _{SD} ≤ 11.6A Pulse Test :	ating : Pulse width limited by maximum junction temper, di/dt \leq 300A/µs, $V_{DD} \leq BV_{DSS}$. Starting T_J = 25°C Pulse width \leq 300µs, Duty cycle \leq 2% adependent of operating temperature	rature					




FQD12N20LTM_F085 200V Logic Level N-Channel MOSFET


FQD12N20LTM_F085 Rev. B

www.fairchildsemi.com

FAIRCHILD

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™ Auto-SPM™ Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ DEUXPEED Dual Cool™ EcoSPARK[®] EfficientMax™ ESBC™ F R Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT[®] FAST[®] FastvCore™ FETBench™ FlashWriter®*

F-PFS™ **FRFET**[®] Global Power Resource SM Green FPS™ Green FPS™ e-Series™ Gmax™ GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ Motion-SPM™ OptoHiT™ **OPTOLOGIC[®] OPTOPLANAR®** PDP SPM™

Power-SPM™ PowerTrench[®] PowerXS™ Programmable Active Droop™ OFFT QS™ Quiet Series™ RapidConfigure™)™ Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8

E SYSTEM ®* GENERAL The Power Franchise®

p franchise

TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic® TINYOPTO™ TinyPOwer™ TinyPWM™ TinyWire™ TriFault Detect™ TRUECURRENT™* µSerDes™ QD12N20LTM_F085 200V Logic Level N-Channel MOSFET

UHC[®] Ultra FRFET™ UniFET™ VCX™ VisualMax™ XS™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FPSTM

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

SupreMOS™ SyncFET™

Sync-Lock™

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are
 intended for surgical implant into the body or (b) support or sustain life,
 and (c) whose failure to perform when properly used in accordance
 with instructions for use provided in the labeling, can be reasonably
 expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition			
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.			
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.			
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.			
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.			