

1. Functional Description of the AMG-XB404

The AMG-XB404 is a feature rich SoC, providing a single chip solution for motor control, including Digital Motor Control Engine (DMCE), Power Factor Correction (PFC), high level system control MCU, and Switch Mode Power Supply (SMPS). The IC's multi-core design enables parallel execution of all system functions while keeping the MCU load to a minimum. The DMCE includes a processing unit, PWM generator, and power stage driver allowing for sensorless drive. The AMG-XB404's switching power supply circuit, which includes software adjustable switching frequency, requires the IC to only have a single, low-grade power supply.

2. Features

- □ Supply voltage: 4.5VDC...5.5VDC
- □ SoC for asynchronous & synchronous motors
- □ Independent DMCE, PFC, MCU, SMPS
- AVR compatible 8 bit MCU with 32kB program memory
- □ Over-current protection with single shunt current control
- □ Fully digital, programmable PFC controller
- □ Internal ±2% RC-oscillator
- Built-in oscillator for external crystal or resonator (optional)
- □ Software-adjustable clock frequency FLL
- □ 10-bit 2-MSPS multiplexed ADC
- □ Integrated switching power supply (SMPS)
- □ Integrated EEPROM memory
- □ 17 GPIO (3 thereof which can be analog)
- □ Ambient temperature range: -25°C...85°C
- □ Package: LQFP68 Body size: 10mm x 10mm x 1.4mm
- □ RoHS compliant

3. Application

Figure 1: AMG-XB404 Simplified Application Circuit

Fully Integrated Single Motor Controller for Electrical Motors

Table of Contents

1. Functional Description of the AMG-XB404	1
2. Features	1
3. Application	2
4. Block Diagram	6
5. Block Descriptions	7
5.1. System SPI Unit and On-Chip Bus	7
5.2. IO Expander	<u>9</u>
5.2.1. IC Revision Information	<u>9</u>
5.2.2. Test Modes, EEPROM Self-Programming Mode, Lock Indicator, Clock Control	9
5.2.3. Power Output Polarity and Over-Current Flag Control for DMCE	9
5.2.4. Switching Controller PWM Frequency	10
5.2.5. Polarity of the PFC Switching Signal	10
5.2.6. PWM Frequency Setting for DMCE	10
5.2.7. FLL Configuration and Status	10
5.2.8. U, V, W Phase Feedback Monitor	10
5.2.9. ADC Offset Calibration Data	11
5.2.10. PFC, DMCE and ADC Software Controlled Reset Signals	<u>11</u>
5.2.11. Operational Amplifier Power Down Signals	11
5.2.12. SPI Unit Low-Pass Filter Settings	<u>11</u>
5.2.13. Assignment of Power Outputs and High Voltage Read-Back Pins	<u>11</u>
5.2.14. DMCE and PFC Driver Signal Read-Back	12
5.2.15. Band Gap Reference Tuning Setting	12
5.2.16. OFI Direct Read-Back	12
5.2.17. EEPROM Direct Access	12
5.2.18. MCU-Accessible Engineering Mode Enable	12
5.2.19. ADC TUN Mode, DMCE Value Offset Selection	12
5.2.20. ADC Sample Triggers for Test, Supply Voltage, and Temperature	12
5.2.21. IO Expander Overview	13
5.2.22. Interrupt Controller	14
5.2.23. Status Register	16
5.3. Analog Data Aquisition Unit (ADAQ)	16
5.3.1. ADC Interface	16
5.3.2. Analog Input Signal Ranges	17

AMG-XB404

alpha microelectronics gmbh

Fully Integrated Single Motor Controller for Electrical Motors

5.3.3. Triggering Analog Signal Acquisition	18
5.3.4. Accessing ADC Sample Data, ADC Interrupts	19
5.4. Digital Motor Control Engine (DMCE)	21
5.4.1. Motor Control Processing Unit (MCPU)	22
5.4.2. Register File	23
5.4.3. PWM Unit	23
5.4.4. Accessing the DMCE via the On-Chip Bus	24
5.4.5. Power Stage Over-Current Protection	26
5.5. Power Factor Correction Controller (PFC)	27
5.5.1. PFC Instruction Set Description	29
5.5.2. PFC Data Memory Description	30
5.5.3. Accessing the PFC Controller via the On-Chip Bus	33
5.6. Switch Mode Power Supply (SMPS)	35
5.7. Micro Controller Unit (MCU)	37
5.7.1. Programming and Debug Interface	37
5.7.1.1. Program Memory Initialization	38
5.7.1.2. Shadow SRAM Reads and Writes	39
5.7.1.3. EEPROM Rads and Writes	39
5.7.1.4. March C- SRAM Test	42
5.7.1.5. EEPROM Calibration and User Data Space	42
5.7.1.6. Debug Interface	44
5.7.2. General Purpose Input Output Interface (GPIO)	44
5.7.3. Universal Asynchronous Receiver Transmitter Interface (UART)	47
5.7.4. Serial Parallel Interface (SPI)	48
5.7.5. Two Wire Interface (TWI)	49
5.7.6. General Purpose Timers	<u>52</u>
5.7.7. Watchdog Timer	<u>53</u>
5.8. System Clock	55
5.9. Power-On and System Reset	56
5.10. On-Chip Bus Register Summary	58
5.11. MCU Instruction Set	<u>59</u>
6. Pinning	65
7. Absolute Maximum Ratings	<u>66</u>
8. Electrical Characteristics	67
8.1. Operational Range	67

Fully Integrated Single Motor Controller for Electrical Motors

8.2. DC Characteristics	67
8.3. AC Characteristics	68
8.4. ADC Characteristics	68
8.5. Supply Current Characteristics	69
8.6. Logic-Level Characteristics	69
9. IC-Package	70
10. IC-Marking	71
11. Packing Specification	71
12. Notes and Cautions	72
12.1. ESD Protection	72
12.2. Storage Conditions	72
13. Disclaimer	72
14. Contact Information	

4. Block Diagram

Figure 2: AMG-XB404 Block Diagram

5. Block Descriptions

5.1. System SPI Unit and On-Chip Bus

Figure 3: SPI bus masters and clients overview

On-chip communication is built around an 8 bit on-chip bus. There are two bus masters: the MCU core is the primary bus master and the System SPI unit is the secondary bus master. The System SPI unit is used to program, configure, and debug the AMG-XB404. An activity signal from the MCU to the System SPI unit indicates activity on the bus, and ensures that the System SPI can only access the bus if the MCU is not. MCU bus reads and writes can slow down but not inhibit the execution of System SPI commands. Note that the EEPROM and debug interface can be accessed via the System SPI only.

There are four basic System SPI commands to write and read data, Table 1 shows an overview. See table 32 on page 58 for an overview of all 8 bit buses addresses.

Command	Description
0	not used
1	write 8 bit data to 5 bit addressed register (see figure 1)
2	read 8 bit data from 5 bit addressed register (see figure 2)
3	write 8 bit data to 5 bit addressed register; wait for LSB=0 at the same address (see figure Fehler: Referenz nicht gefunden)
4	read 32 bit data from 5 bit addressed register (see figure Fehler: Referenz nicht gefunden)

Table 1: System SPI commands

The bus employs 6 bit wide addressing. While the MCU may access all 64 addresses, the System SPI can only access the 32 lower addresses.

System SPI transmissions are framed by the chip select signal SCS, the System SPI unit is active only when SCS is LOW. The transmission timing is determined by the serial clock signal SCLK. Data is received via the serial data input signal SDI and sent via the serial data output signal SDO. Data signals are valid at the rising edge of the serial clock signal. Every transmission starts with the MSB and ends with an inverted XOR parity bit generated over all previously sent bits. If the transmission is received correctly, i.e. ends with a valid parity bit, the command will be processed by the System SPI unit. Handshaking is accomplished by the master waiting for SDO to become HIGH after issuing a command. In case of an unsuccessful parity check SDO will stay LOW permanently and a time-out mechanism must take effect on the master's side. The signal

waveforms for all commands are shown below.

A digital low-pass filter function can be activated for all inputs of the System SPI unit in order to improve noise rejection, see also section 5.2 p. 9. The maximum usable clock frequency of the System SPI unit will be reduced as the filter depth is increased.

The 8 bit write command contains 3 command bits followed by the 5 bit address of the register to be written to and 8 bits of data (see figure 4).

Figure 4: Command 1, write (8 bit)

The 8 bit read command requests the content of a register. The System SPI responds by setting SDO to HIGH when data is ready and returning 8 bits of data starting with the second negative edge of SCLK (see figure 5).

Figure 5: Command 2, read (8 bit)

Command 3 writes 8 bits of data into a register and will not return a ready status until the LSB of the previously written register becomes 0. This command is used when synchronization with units running at a different clock frequency, such as the DMCE core, is required (see figure 6).

Figure 6: Command 3, write/read (8 bit)

Command 4 reads a 32 bit DMCE data register value in a single transmission cycle which allows for higher effective data rates than using a series of 8 bit reads and writes, see section 5.4.4 p. 24 for the description of DMCE register reads. As shown in figure 7 a 5 bit DMCE base address and an 8 bit register address R[7:0] are sent by the master and a 32 bit wide reply is returned by the System SPI unit.

Figure 7: Command 4, register read (32 bit)

5.2. IO Expander

The IO expander module serves to provide additional MCU configuration registers (see Table 2). The address register IOEXPA is used to set the index for the configuration register accessed through the data register IOEXPD. IOEXPD provides access to to following functions.

5.2.1. IC Revision Information

Address 0 contains the number of the current AMG-XB404 revision.

5.2.2. Test Modes, EEPROM Self-Programming Mode, Lock Indicator, Clock Control

Bit 0 of address 1 enables the digital test mode if set to 1 and cannot be read. The digital test mode can only be left by performing an IC reset. This function is used during IC test only.

Bit 1 of address 1 sets and indicates EEPROM self-programming mode which is used to write and read from the AMG-XB404's program EEPROM. EEPROM self-programming mode is enabled by setting EME to 1, and left by setting EME to 0. This mode is only available when the AMG-XB404 is not locked. For details on self-programming see section 5.7.1 p. 37.

Bit 2 of address 1 indicates if the AMG-XB404 is locked, 1 indicates a locked IC, which is the initial state. See section 5.7.1, p. 37 for the details of unlocking the IC.

Bit 3 of address 1 is reserved and must not set to 1.

Bit 4 of address 1 is used to control the output of the system clock via the CLKIO pin. When this CLKOFF flag is set to 1 output via pin CLKIO will be disabled, e.g. when the AMG-XB404's system clock need not be provided to off-chip circuitry. Initially CLKOFF is set to 0.

Bit 5 of address 1 is used to fix the clock select signals in the present state. When this CLKLOCK flag is set to 1 the clock selection will be fixed according to the value present at pins CLKSEL and XO_OSEL, see also section 5.8. page 55, i.e. noise present at these pins will not interfere with the clock source selection. Initially CLKLOCK is set to 0.

5.2.3. Power Output Polarity and Over-Current Flag Control for DMCE

The lower nibble of address 2 controls the logic level at Power output pins. All six signal pins will remain in high ohmic state unless DMCE0OE is set to 1. If DMCE0POL is set to 1 the connected power stage must have an inverting input to output characteristic, otherwise the power stage must be non-inverting.

The higher nibble of address 2 controls the power stage over-current protection interface, see also Figure 14 on page 26. OFIPOL0 selects the polarity of the OFI signal, for an active-HIGH OFI signal input these flags must be set to zero. OFIERR0 is set to one if an over-current error of the associated power stage is encountered. If either flag is set the shared DMCE/PFC interrupt flag will be set. The error flag can be reset by writing a value of 1 to OFIRES0. Resetting the error flag is mandatory when the shared DMCE/PFC interrupt is enabled, see also section 5.2.22 p. 14.

5.2.4. Switching Controller PWM Frequency

The clock pre-scaler SWCPRE for the SMPS is set using addresses 3 and 4. The lower byte has to be written before the high byte. For the changed value to have an effect both bytes have to be written. The SMPS clock frequency is calculated as:

$$f_{SWC} = \frac{f_{MCU}}{2 \cdot (SWCPRE + 1)}$$
, $1 \leq SWCPRE \leq 32767$

Setting SWCPRE to 0 enables an internal RC oscillator to generate the SMPS's PWM clock. Its typical frequency is 22kHz. This is the default on startup.

5.2.5. Polarity of the PFC Switching Signal

The LSB of address 5 sets the polarity of the PFC controller's logic level PWM output. 0 means active HIGH, 1 means active LOW.

5.2.6. PWM Frequency Setting for DMCE

DMCE's PWM clock setting is controlled through a register pair C1, C2 (accessible via addresses 6 to 8). The range of C1 is 0..7 (3 bit) and the range of C2 is 0..255 (8 bit). The DMCE has got an individual pair of registers allowing independent PWM clocks. Address 6 also holds two flags, CNT0X2 and CNT1X2, to double the PWM base frequency of the DMCE. The PWM frequency can be calculated as:

$$f_{PWM} = \begin{cases} f_{FPU} \cdot \frac{2^8 - C2 + C1}{2^{13} \cdot (2^8 + C1(C2 - 1))} \cdot 2^{CNTX2} & ; \text{ for } C2 > 1 \\ f_{FPU} \cdot \frac{2^8 - C2}{2^{21} - C2} \cdot 2^{CNTX2} & ; \text{ for } C2 \le 1 \end{cases}$$

5.2.7. FLL Configuration and Status

FLL related functions are controlled using addresses 9,10, and 12. The lower byte of the divider setting (address 9) has to be written before the high byte (address 10). The FLL divider FLLDIV is used to set the clock frequency of the PFC, ADC, and DMCE which can be calculated as:

$$f_{VCO} = \frac{FLLDIV + 1}{16 \cdot T_{RC}}$$
, where T_{RC} is the RC-ramp's rise time.

The MCU's clock frequency is calculated as: $f_{MCU} = \frac{f_{VCO}}{8}$. On reading FLLDIV the most

recently acquired VCO frequency counter value will be returned, thus allowing to monitor the VCO frequency directly, note that the high byte and low byte of the counter value are not guaranteed to belong to the same VCO frequency counter value.

PREC determines the FLL's frequency step for regulating the system clock frequency. Vaild values are 4 to 11. Larger values correspond to smaller frequency steps. PREC is increased when the target frequency is crossed within 3 frequency adjustment steps otherwise PREC will be decreased. The maximum value of PREC is given by the value of MPREC. Both maximum PREC value and current PREC value can be read from address 12. MPREC may also be set, its initial value is 10.

5.2.8. U, V, W Phase Feedback Monitor

The comparator result of the signals present at M0R1, M0R2, and M0R3 can be read back from address 13. RU, RV, and RW are assigned according to the setting detailed in section 5.2.13..

Writing bit 3, DTC0OVR, disables hardware dead time compensation for DMCE0.

AMG-XB404 Revision: A 2. Nov. 2012 © All rights reserved Page 10 of 73

Fully Integrated Single Motor Controller for Electrical Motors

Writing DTCORNG sets up the allowable error range for dead time compensation of DCME0. If the actual duty cycle, determined by the feed back pins, differs from the expected duty cycle by more $2^{(DTCORNG+CNT0X2)}$

than $\frac{2}{8}$, dead time compensation will be skipped. See also section 5.2.6 on

page 10 for explanation on CNT0X2.

5.2.9. ADC Offset Calibration Data

Addresses 14 to 25 hold the ADC offset compensation values. The order of the channels is described in table 7 on page 20. The offset values are 8-bit signed integer numbers for positive and negative offset-correction.

5.2.10. PFC, DMCE and ADC Software Controlled Reset Signals

Address 26 holds the reset flags for the DMCE core, the PFC controller, and the ADC interface. The reset flags are active if set to one and initially reset to zero. Setting these flags can be used to when units are unused.

5.2.11. Operational Amplifier Power Down Signals

Addresses 27 and 28 hold the power-down flags for all analog signal operational amplifiers. Bits 0 to 7 of address 27 control the voltage follower for ADC7 to ADC0. Bits 0 to 6 of address 28 control the enable state of the VDC voltage follower (bit 0), VAC voltage follower (bit 1), DMCE0 current amplifier (bit 2), , PFC current amplifier (bit 4), ADC buffer amplifier (bit 5), and reference voltage buffer amplifier (bit 6). The MSB (bit 7) of address 28 can be used to power-down the bias supply for all amplifiers. Disabling of the operational amplifiers is performed by setting individual flags to one, initially all flags are set to zero.

Note that disabling the current amplifier of DMCE0 will in turn disable the three associated phase voltage read-back comparators.

5.2.12. SPI Unit Low-Pass Filter Settings

Low-pass filtering is available for both the AMG-XB404's system SPI unit and the MCU-controlled SPI unit. Address 29 holds the time constants for each SPI unit's input signal low pass filter. The value stated for SPILP specifies the filter depth of the low pass filter for the system SPI as a multiple of system clock cylces. The value stated for SPILP2 specifies the filter depth of the low pass filter for the MCU's SPI unit. The time base of the filter is the system clock. A value of 0 for SPILP deactivated low-pass filtering, this is the default value.

5.2.13. Assignment of Power Outputs and High Voltage Read-Back Pins

In order to accommodate any phase order with a minimum of wiring effort AMG-XB404's gate driver outputs and high voltage feedback signals are connected to freely programmable physical IC pins. They are assigned using addresses 30 through 35.

Address 30 contains the configuration for the three pins associated with the U-phase of DMCE0. Bits 0 to 2 configure the high-side drive signal pin. When set to a value of 1 through 6 UH will be assigned to one of pin M0O1 through M0O6. When set to a value of 0 the pin M0O1 is driven to a static low state, when set to 7 the pin M0O1 will be driven to a static high state.

Bits 3 to 5 configure the low-side drive signal pin. When set to a value of 1 through 6 UL will be assigned to one of pin M0O1 through M0O6. When set to a value of 0 the pin M0O2 is driven to a static low state, when set to 7 the pin M0O2 will be driven to a static high state.

Bits 6 and 7 configure the output state read-back pin RU. When set to a value of 1 through 3 RU will be assigned to one of pin M0R1 through M0R3. When set to a value of 0 no read-back pin will be assigned.

Addresses 31 and 32 contain the configuration for the three pins associated with the V-phase, and W-phase of DMCE0 respectively, assigned in analogous fashion to address 30. They control the assignment of VH, VL, WH and WL to M0O1 through M0O6, the static logic state of pins M0O3, M0O4, M0O5, and M0O6, and the position of the output state read-back pins RV and RW to M0R1 through M0R3.

5.2.14. DMCE and PFC Driver Signal Read-Back

Addresses 36 and 37 are used to read back the logic level at the driver outputs of both DMCE and the PFC, this can be used for system health checking.

The MSB of both addresses switches between analog and digital read back inputs. If MORMUX is set to 1, analog comparators are used for reading back DMCE0 driver outputs, otherwise digital inputs are used. The same applies for M1RMUX concerning DMCE1 output read back. The analog and digital inputs rely in the same I/O-Pads, so switching between those does not affect pin layout configuration.

5.2.15. Band Gap Reference Tuning Setting

Address 38 holds the four bits wide band gap reference tuning setting, VBGTUN, allowing for the on-chip reference voltage generator to be adjusted in steps of 0.4% per LSB. The initial setting of VBGTUN is eight, corresponding to a native reference voltage. Tuning of the reference will ensure the correct setting of all derived regulated voltages.

5.2.16. OFI Direct Read-Back

Address 39 is used for reading the state of the MOOFI input pin, bypassing the configured polarity and low-pass filtering settings.

5.2.17. EEPROM Direct Access

Address 40 gives access to the serial interface of the EEPROM. Bit 0 is used for serially writing data to and reading data from the EEPROM. The serial clock signal is transmitted via bit 1.

5.2.18. MCU-Accessible Engineering Mode Enable

Bit 0 of address 41 holds the MCU-accessible engineering mode enable flag EME2. By setting EME2 to 1 the MCU can access the EEPROM via address 40 of the IO expander. To leave the self-programming mode EME2 is set to 0, this is the default value. This bit cannot be set by the SPI bus master.

5.2.19. ADC TUN Mode, DMCE Value Offset Selection

Bit 0 of address 42 holds the ADC tuning mode flag, TUNMODE. When set the ADC will perform a tune cycle with each conversion. By default TUNMODE is not set.

Bit 1 and bit 2 of address 42 must remain 0, this is the default value.

Bit 3 of address 42 holds the offset select flag, OFFSSEL, used to select the offset value of DMCE0 when set to 1, this is the default. For details see section 5.3 p. 16.

5.2.20. ADC Sample Triggers for Test, Supply Voltage, and Temperature

Address 43 gives access to additional ADC request flags.

Bit 0, IREQ, is used to trigger sampling of the DC bus voltage, rectified AC voltage, DMCE's current values and the PFC controller's current value. Readiness is indicated by reading this flag as 0.

Bit 1, VDDREQ, is used to trigger sampling of 5V supply voltage. Readiness is indicated by reading VDDREQ as 0.

Fully Integrated Single Motor Controller for Electrical Motors

Bit 2, TREQ, is used to trigger sampling of on-chip temperature values. Readiness is indicated by reading TREQ as 0.

5.2.21. IO Expander Overview

Bit	7	6	5	4	3	2	1	0	Register name	Index address	Comment
Write/Read				ADD	R[7:0]						
Initial value	0	0	0	0	0	0	0	0	IOEXPA	-	Address register
Write	-	-	-	-	-	-	-	-		_	
Read	0	0	0	0	0	0	1	1	1	0 IC revisi	IC revision
Write/Read	-	-	CLK-LOCK	CLKOFF	reserved	LOCKED (read)	EME	ТМЕ	-	1	Engineering and test mode enable
Initial value	-	-	0	0	0	1	0	0			Lock indicator
Write	OFIRES1	OFIPOL1	OFIRES0	OFIPOL0	reserved	reserved	DMCE0POL	DMCE0OE	E		
Read	OFIERR1	OFIPOL1	OFIERR0	OFIPOL0	reserved	reserved	DMCE0POL	DMCE0OE		2	DMCE output configuration
Initial value	0	0	0	0	0	0	0	0			U U
Write/Read				SWCP	RE[7:0]					3	0.1111
Initial value	0	0	0	0	0	0	0	0		5	controller pre-
Write/Read	-			s	WCPRE[14:	8]	_			4	scaler low/high
Initial value	-	0	0	0	0	0	0	0	7	4	
Write/Read	-	-	-	-	-	-	-	PFCPOL		5	PFC PWM output polarity
Initial value	-	-	-	-	-	-	-	0		5	
Write/Read	reserved		reserved		CNT0X2		DMCE0C1			DMCE C1	
Initial value	0	0	0	0	0	0	0	0		0	double frequency
Write/Read		1		DMCE	C2[7:0]	1		1		_	511050 00 J
Initial value	0	0	0	0	0	0 0 0			IOEXPD	/	DMCE0 C2 value
Write/Read				rese	erved	1			1		
Initial value	0	0	0	0	0	0	0	0		8	reserved
Write/Read				FLLD	IV[7:0]						FLL down-scaler;
Initial value	0	0	0	0	0	0	0	0		9	low byte
Write/Read	-	-	-			FLLDIV[12:8	5]			10	FLL down-scaler;
Initial value	-	-	-	0	1	0	0	0		10	high byte
Write		MPRE	C[3:0]		-	-	-	-			maximum
Read		MPRE	C[3:0]			PRE	C[3:0]			12	precision; current
Initial value	1	0	1	0	-	-	-	-			FLL precision
Write	reserved	-	rese	rved	DTC0OVR	-	DTC0R	NG[1:0]			Output
Read	reserved	reserved	reserved	reserved	DTC0OVR	RW0	RV0	RU0	1	13	comparator read-back and
Initial value	0	0	0	0	0	0	0	0			DTC setup
Write/Read	ad ADCOFF[7:0]								44.05	ADC offset	
Initial value	0	0	0	0	0	0	0	0		1425	.25 registers
Write/ Read	-	-	-	-	ADCRES	PFCRES	DMCE0RES reserved	reservedD MCE0RES		26	Unit reset flags
Initial value	-	-	-	-	0	0	0	0			

Table 2a: IO port expander registers

Fully Integrated Single Motor Controller for Electrical Motors

Bit	7	6	5	4	3	2	1	0	Register name	Index address	Comment	
Write/Read		1		ADC[0:7]	OPAMPEN					07		
Initial value	0	0	0	0	0	0	0	0		27	Operational	
Write/Read	BIASEN	Vref buffer E.	ADC buffer E.	PFC current E.	reserved	DMCE0 E.	VAC E.	VDC E.		28	bias enable flags	
Initial value	0	0	0	0	0	0	0	0				
Write/Read		SPILP	2[3:0]			SPILI	P[3:0]			20	SPI low pass	
Initial value	0	0	0	0 0 0		0	0	0		25	filter values	
Write/Read	MORUCO	ONF[1:0]	М	OULCONF[2	:0]	м	DUHCONF[2	:0]		30	DMCE0 U-phase	
Initial value	0	0	0	0	0	0	0 0				configuration	
Write/Read	MORVCO	ONF[1:0]	M	0VLCONF[2:	:0]	M	VHCONF[2	:0]		31	DMCE0 V-phase	
Initial value	0	0	0	0	0	0	0	0			configuration	
Write/Read	MORWC	ONF[1:0]	м	WLCONF[2	:0]	м	WHCONF[2	:0]		32	DMCE0 W-phase	
Initial value	0	0	0	0	0	0	0	0			configuration	
Write/Read	rese	rved		reserved	I		reserved			33	reserved	
Initial value	0	0	0	0	0	0	0	0				
Write/Read	rese	rved	reserved reserved				34	reserved				
Initial value	0	0	0	0	0	0	0	0				
Write/Read	rese	rved		reserved			reserved]	35	reserved	
Initial value	0	0	0	0	0	0	0	0				
Write	MORMUX	-	-	-	-	-	-	-			DMCE0 and PFC	
Read	MORMUX	PI			MOI	[5:0]			36		read-back	
Initial value	0	-	-	-	-	-	-	-				
Write	reserved	-	-	-	-	-	-	-				
Read	reserved	-			reserved					37	reserved	
Initial value	0	-	-	-	-	-	-	-				
Write/Read	-	-	-	-		VBGTU	JN[3:0]	1		38	Band gap	
Initial value	-	-	-	-	1	0	0	0			reletence aujust	
Write	-	-	-	-	-	-	-	-			MxOFI direct	
Read	-	-	-	-	-	-	reserved	M0OFI		39	read-back	
Initial value	-	-	-	-	-	-	-	-				
Write	-	-	-	-	-	-	EE_SCLO	EE_SDAO				
Read	-	-	-	-	-	-	-	EE_SDAI		40	EEPROM access port	
Initial value	-	-	-	-	-	-	0	0				
Write/Read	-	-	-	-	-	-	-	EME2		11	engineering	
Initial value	-	-	-	-	-	-	-	0		41	MCU only	
Write/Read	-	-	-	-	OFFSSEL	-	-	TUN- MODE		42	ADC tune mode selection;	
Initial value	-	-	-	-	0	0	0	0 0			selection	
Write/Read	-	-	-	-	-	TREQ	VDDREQ	IREQ		40	Additional ADC	
Initial value	-	-	-	-	-	0	0	0		43	Tunctions port	

Table 2b: IO port expander registers

5.2.22. Interrupt Controller

The AMG-XB404 supports ten interrupt sources. Interrupts are enabled by setting the global

interrupt enable flag GIE and the desired per-interrupt interrupt enable flags to 1. If more than one interrupt signal is active the interrupt with the lowest interrupt vector will be executed first. The GIE flag is disabled during interrupt vector execution and re-enabled when returning from an interrupt. It is possible to manually re-enable the GIE flag during interrupt execution, and thus employ nested interrupts.

As shown in table 3 all interrupts are indicated by interrupt flags in registers INTCONL and INTCONH. The interrupt enable flags TWIIE (two wire interface), TXCIE (UART transmission complete), RXCIE (UART reception complete), and SPIIE (MCU SPI ready) are contained in INTCONH. All other interrupt enable flags are contained in the control registers of the individual units as summarized in table 4.

Bit	7	6	5	4	3	2	1	0	Register name	Comment
Write	-	-	-	-	-	-	-	-		Interrupt
Read	IF_ADC	IF_TXC	IF_RXC	IF_TWI	EXTINT	IF_TMR2	IF_TMR1	IF_TMR0	INTCONL	controller register;
Initial value	0	0	0	0	0	0	0	0		low byte
Write	-	-	-	PFCIE	SPIIE	RXCIE	TXCIE	TWIE		Interrupt
Read	IF_PFC	IF_SPI	1	PFCIE	SPIIE	RXCIE	TXCIE	TWIE	INTCONH	controller register;
Initial value	0	0	1	0	0	0	0	0		high byte

Table 3: Interrupt controller registers

Interrupt priority	Source	Auto clear	Interrupt events	Interrupt enable flag	Interrupt flag
1	TMR0	yes	Timer match Input capture	TCR8[7]	INTCONL[0]
2	TMR1	yes	Timer match Input capture	TCR8[7]	INTCONL[1]
3	TMR2	yes	Timer match Input capture	TCR16[7]	INTCONL[2]
4	GPIO	no	External interrupt	PORTIE	INTCONL[3], PORTIFR
5	UART RXC	no	Data reception complete	INTCONH[2]	INTCONL[5]
6	UART TXC	no	Data transmission complete	INTCONH[1]	INTCONL[6]
7	TWI	no	Data reception/ transmission complete	INTCONH[0]	INTCONL[4]
8	ADC	no	Sampling finished	ADCCONF[6]	INTCONL[7]
9	SPI	no	Data transmission complete	INTCONH[3]	INTCONH[6]
10	PFC	no	DMCE/PFC exception	INTCONH[4]	INTCONH[7]

Table 4: Interrupt sources

5.2.23. Status Register

The status register SREG contains the global interrupt enable flag GIE and the MCU's status bits. These bits are the transfer flag (TO), the half carry flag (HO), the signed flag (SO), the twos complement overflow flag (VO), the negative flag (NO), the zero flag (ZO), and the carry flag (CO) as summarized in table 5.

Bit	7	6	5	4	3	2	1	0	Register name	Comment
Write	GIE	то	но	SO	vo	NO	zo	со		MCU status
Read	GIE	то	но	SO	vo	NO	ZO	со	SREG	register
Initial value	0	0	0	0	0	0	0	0		

Table 5: Status register

5.3. Analog Data Aquisition Unit (ADAQ)

The Analog Data AQuisition block features the measurement of external voltages and their use for system control purposes. Its heart is a single 10 bit 2M samples/s Successive Approximation Register (SAR) - ADC. The ADC is shared by the AMG-XB404's DMCE, PFC controller, and MCU. In addition it contains measuring amplifiers, a multiplexer and an ADC interface.

5.3.1. ADC Interface

The ADC interface serves to arbitrate between all units requiring sample values and the ADC.

There are three general purpose ADC channels, a voltage monitor channel and a temperature monitor channel dedicated to the MCU. Conversion status and the results of these channels can be acquired by reading the ADC's IO registers via the on-chip bus.

For the general purpose ADC channels conversions are triggered by port writes, the unit can raise an interrupt flag to indicate a completed conversion. The conversion status and result can be acquired by reading the ADC interface's IO registers. An analog multiplexer is used to select the desired internal or external signal source as shown in figure 8.

Every ADC channel has got a systematic offset. Offset correction values are stored in the ADCOFF registers in the IO port expander module (see section 5.2 p. 9). ADC channels, PFC VAC, PFC VDC, chip-temperature and VDD are automatically corrected by their offset values when sampled.

Figure 8: XB404 ADAQ block schematic

5.3.2. Analog Input Signal Ranges

The input signal range at the analog input pins of the general purpose ADC channels, the DC bus voltage, the rectified AC voltage, DMCE's current signals and PFC AC current signal is a nominal input voltage range of 0..5V.

The ADC input voltage for the current signal inputs can be calculated as: $V_0 = -V_I \cdot \frac{R_2}{R_1} + V_{OFFS}$

and is shown in figure 9 (see also figure 8 p. 17). V_{OFFS} of the DMCE's current channels and the PFC's current channel is different because the DMCE's currents may have either polarity whereas the PFC's current is always smaller than zero.

Figure 9: ADC current input characteristic

For the DC current channel VOFFS is set to nominally 445 mV. For the AC current channel VOFFS is set to about 24 mV.

For improved noise rejection and accuracy the rectified AC voltage and the DC bus voltage values are digitally low-pass filtered using IIR filters, the low-pass filtered values VACLP and VDCLP are fed directly to the PFC controller. VDCLP is fed to the DMCE core and an inverter. The low-pass filtered signal value for VACLP and VDCLP can be calculated as follows:

$$VACLP_{N} = \frac{15}{16} \cdot VACLP_{N-1} + VAC_{N} \quad VDCLP_{N} = \frac{31}{32} \cdot VDCLP_{N-1} + VDC_{N}$$

5.3.3. Triggering Analog Signal Acquisition

Sampling of the general purpose ADC channels 0 through 7 is triggered by writing the connected flag within the register ADCREQ as one. Completion is indicated by reading the connected flag in register ADCINT as one.

The rectified AC voltage and the DC bus voltage are sampled at the analog inputs VAC and VDC. Sampling of these signals is triggered automatically every 1024 cycles of the system clock if DMCE core is not reset. Sampling can also be triggered by setting the indirect request flag, IREQ, via the IO expander (see section 5.2.20., page 12). The raw sample value can be read via the ADC's registers (see table 6, p. 19), the low-pass filtered value using the respective DMCE and PFC registers.

Sampling of DMCE current offset values is triggered when a zero-vector is set by the DMCE's PWM unit. It is performed autonomously at the beginning of each PWM cycle when all low-side switches of the PWM module are in ON-state, if the DMCE is not reset. Sampling can also be triggered by setting the indirect request flag, IREQ, via the IO expander (see section 5.2.20., page 12). The raw sample value can be read using the ADC unit's registers as shown in table 7, p. 20, the low-pass filtered value using the DMCE's register.

An on-chip temperature sensor provides a 0..1.8V analog signal that is sufficient for measurements with an accuracy of 1.25 K/bit. The calibration setting of the temperature sensor is stored in the EEPROM. Temperature sampling is triggered by setting the TREQ flag within the IO expander, see section 5.2 p. 9. The TREQ flag will be reset to 0 when a temperature sample has been acquired.

A voltage divider with an accuracy of 8 mV/bit is used to monitor the voltage at the A5V pin. Voltage sampling is triggered by setting the VDDREQ flag within the IO expander, see section 5.2 p. 9. The VDDREQ flag will be reset to 0 when a A5V sample has been acquired. The supply voltage can be calculated as:

$$A5V = \frac{ADC_{VMON} \cdot 5 \cdot 1.8V}{1023}$$

5.3.4. Accessing ADC Sample Data, ADC Interrupts

The ADC is configured through the ADCCONF register shown in table 6 p. 19. The ADC channel to be addressed is chosen by setting the four least significant bits of the ADCCONF register (as shown in detail in table 7, p. 20). By setting ADCIE to 1 ADC interrupt generation is enabled.

The interrupt flags for ADC channel 0 to 7 can be accessed through the interrupt flag register ADCINT. To reset a specific interrupt flag the corresponding bit in the interrupt reset register ADCIRES must be written as 1.

The two least significant bits of the conversion result are accessed through bits four and five of ADCCONF. The eight most significant bits are held by the data register ADCD. The most significant bit's value must always be retrieved first.

The ADC can be run in either synchronous or asynchronous mode. By setting the MSB in ADCCONF to 0 synchronous mode is activated. In synchronous mode ADC channel 0 through 7 will only be sampled after an acquisition of the DC bus voltage to reduce distortions caused by the IPM. In synchronous mode the sampling rate is limited to the DMCE's PWM frequency. In asynchronous mode sampling of ADC channel 0 through 7 will be performed at the next available time, i.e. when no ADC channel with a higher priority is pending.

Any ADC acquisition initiated by either DMCE or the PFC controller has a higher priority than ADC channel 0 through 7. Only temperature measurements, D5V measurements and tuning cycles have a lower priority. The pending ADC channel with the lowest number will always be sampled first (see also Table 7).

Bit	7	6	5	4	3	2	1	0	Register name	Comment
Write	ASYNC	ADCIE	SEL[1:0]		0	0	ADCCH[1:0]			ADC
Read	ASYNC ADCIE ADCD[1:0]		D[1:0]	0	0	ADCO	ADCCH[1:0]		configuration register	
Initial value	0	0	0	0	0	0	0	0		_
Write	0	0	0	0	0	0	IRCH	H[1:0]		ADC interrupt
Initial value	0	0	0	0	0	0	0	0	ADCIRES	reset register; Channel 02
Read				ADC	D[9:2]				4000	ADC data
Initial value	0	0	0	0	0	0	0	0	ADCD	register
Write	0	0	0	0	0	0	REQC	CH[1:0]		ADC request
Initial value	0	0	0	0	0	0	0	0	ADCREQ	register; Channel 02
Read	0	0	0	0	0	0	INTADO	CH[1:0]	H[1:0]	
Initial value	0	0	0	0	0	0	0	0	ADCINT	flag register; Channel 02

Table 6: XB404 ADC registers

Fully Integrated Single Motor Controller for Electrical Motors

Code	Priority	ADC channel offset register address (IO expander module)	ADCCH[3]	ADCCH[2]	ADCCH[1]	ADCCH[0]	Input pin	Triggered by	
0	6	14	0	0	0	0	ADC Channel 0		
1	7	15	0	0	0	1	ADC Channel 1	ADC request register	
2	8	16	0	0	1	0	ADC Channel 2		
8	14	22	1	0	0	0	VDC	Hardwara timor	
9	15	23	1	0	0	1	VAC	Hardware timer	
10	2	-	1	0	1	0	MOIDC	DMCE0	
12	1	-	1	1	0	0	PFCI	PFC	
13	16	24	1	1	1	0	on-chip temperature sensor	IO expander flags	
14	17	25	1	1	0	1	D5V		
15	4	-	1	1	1	1	M0IDC	DMCE0	

 Table 7: XB404 ADC channel encoding in ADCCONF[3:0]

Delay tuning is the process of adjusting internal signals of the ADC to compensate for temperature and process-dependent delays. Tuning is performed once after IC reset and must be repeated in the face of large temperature changes. Upon reset tuning mode is off, tuning mode can be enabled by setting the TUNMODE flag within the IO expander, see section 5.2 p.9.

5.4. Digital Motor Control Engine (DMCE)

The AMG-XB404 DMCE's features:

- 32 bit Motor Control Processing Unit (MCPU) with single precision floating point format running at 64 MHz
- □ 384 words x 24 bits program memory
- □ 128 floating point (32 bit) registers
- □ Register-mapped hardware ports to control PWM unit from MCPU
- □ 2 lookup-tables (32 floating point entries each)
- D PWM unit including phase current reconstruction and dead time compensation
- Safety shut-down on external error event (e.g. over-current)

Figure 10: DMCE block schematic

5.4.1. Motor Control Processing Unit (MCPU)

The DMCE contains a single precision floating point Motor Control Processing Unit (MCPU) capable of executing computationally expensive motor control algorithms. The Harvard Architecture MCPU executes programs stored in a 384 words deep program memory SRAM.

The MCPU can execute eight different operations. They are performed on the MCPU's 128 directly addressed registers, 64 indirectly addressed registers, and register-mapped hardware ports. Each register represents a 32 bit single precision floating point number.

The eight supported commands have a uniform width of 24 bits and the format is shown in figure 11. The following table gives an overview of each command's function.

Figure 11: MCPU command format

OP	Operation	Description
0	$R_{C} = R_{A} + R_{B}$	Add R_A and R_B and store result in R_C .
1	$R_{C} = R_{A} - R_{B}$	Subtract R_B from R_A and store result in R_C .
2	$R_{C} = R_{A} \cdot R_{B}$	Multiply R_A with R_B and store result in R_c .
3	$R_{C} = \sin\left(R_{A} - 2\right)$	Calculate sine of (R _A -2) and store result in R _c . R _A must satisfy $0 \le R_A \le (\pi/2+0.1)$.
4	$R_{C} = \cos\left(R_{A}' - 2\right)$	Get the corresponding cosine value for the last sine calculation and store the result in R_c . For angles greater that ($\pi/2$) the command returns $cos(R_A'-2)+4$. Consequently, 4 needs to be subtracted from the result in these cases.
5	jump A _T	Perform an unconditional jump to the address given in A_{T} .
6	$jump A_T if(R_A < 0)$	Perform a jump to the address given in A_T if R_A is negative.
7	$R_C = \sqrt{(R_A)}$	Calculate square root of R_A and store result in R_c .

Table 8: MCPU commands

Floating point values used by the AMG-XB404 are similar to the IEEE754 standard. Figure 12 shows the bit assignments. *S* denotes the number's sign. 0 stands for a positive sign and 1 for a negative sign. The number's exponent *E* is offset by +127 i.e. exponents ranging from -127 to 128 can be processed. The mantissa *M* is normalized and always includes a hidden 1. The mantissa's value becomes 1.M in binary format.

A floating point number's value can thus be calculated as $((S)?-1:1)\cdot(1.M)\cdot 2^{E-127}$. For the sake of simplicity, the MCPU can represent neither ±0 nor infinity and has no means of reporting

exceptions. Consequently, any algorithm implemented on the AMG-XB404 must avoid or handle these limitations in order to prevent malfunction.

5.4.2. Register File

Out of the 128 directly addressed registers, registers 0 through 9 are special purpose registers reserved for the communication with the PWM unit (see table 9 p. 23).

Registers can be read from and written to by the DMCE and via the 8 bit on-chip bus. Two times 32 indirectly addressed registers can be read from and written to via registers 8 and 9. The address index is set via register 6. For the details of indirect addressing see table 9.

Address	Register name	Read value	Register name	Write value
0	RDY	Ready flag, sign bit set at the start of each PWM cycle	NU	U-phase PWM value in bits [14:0] of mantissa
1	IU	U-phase current produced by virtual current sensor, value in bits [14:0] of the mantissa, offset by 8192	NV	V-phase PWM value in bits [14:0] of mantissa
2	IV	V-phase current produced by virtual current sensor, value in bits [14:0] of the mantissa, offset by 8192	NW	W-phase PWM value in bits [14:0] of mantissa
3	VDC	DC bus voltage, value in bits [11:0] of the mantissa	TD	PWM dead time TD measured in MCPU clock cycles, value in bits [8:0] of mantissa
4	VDCR	1 divided by DC bus voltage, value contained in bits [22:0] of the mantissa	TAQU	Minimum current sample acquisition time TAQU measured in MCPU clock cycles, value in bits [14:0] of mantissa
5	IOFFS	Zero current offset contained in bits [13:0] of mantissa	IOFFS	Zero current offset, value in bits [13:0] of mantissa
6	NOI	No current obtained if sign bit of this register is set	INDEX	Index for indirect addressing, value in bits [22:18] of mantissa
7	MCPUE N	MCPU enable flag, bit 0 of the mantissa	MCPUE N	MCPU enable flag, if bit 0 of mantissa is set to zero MCPU will be reset
8	IREGA	Read from indirect addressed registers A	IREGA	Write to indirect addressed registers A
9	IREGB	Read from indirect addressed registers B	IREGB	Write to indirect addressed registers B

Table 9: Special purpose registers

5.4.3. PWM Unit

The PWM unit is responsible for generating the PWM timings for each of the three phases according to the duty cycles requested by the MCPU. Voltage vectors are chosen by the PWM unit to enable a safe reconstruction of the motor's phase currents. Duty cycles are specified by the values of NU, NV, and NW written to register addresses 0 to 2 (see table 9). For a duty cycle DC between 0 and 1 the floating point value for NU is calculated as: $NU = 2 + DC \cdot 2^{-22}$. The same equation applies to NV and NW.

Moreover, the PWM unit performs autonomous dead-time compensation by means of the internally assigned feedback pins RU0/1, RV0/1, RW0/1 ensuring the equality of intended and factual duty cycle for each phase.

The PWM unit is also in charge of triggering voltage and current sampling at the appropriate time slots within each PWM cycle and reconstructing the U and V phases' currents (IU, IV). The 12 bit wide values of IU and IV are available to the MCPU core through the special purpose registers at addresses 1 and 2 (see table 9).

The special purpose register at address 3 contains the DC bus voltage floating point value VDC, which is calculated as: $VDC = 2 + VDC_{ADC} \cdot 2^{-22}$. With VDC_{ADC} being the DC bus voltage integer value from the ADC. The inverted DC bus voltage's floating point value VDCR can be accessed at

address 4 and is calculated as: $VDCR = 2 + \frac{1}{VDC_{4DC}} \cdot 2^{-22}$

Fully Integrated Single Motor Controller for Electrical Motors

The PWM unit is capable of indicating a faulty current reconstruction by means of the NOI flag in register 6. The 18 least significant bits form the no-current error vector NOIV. The most significant seven bits of them indicate an error in calculation of the duty cycle. The three least significant bits indicate an error in dead-time compensation. The NOI flag is set if any bit of NOIV is set.

The PWM unit requires the offset value of the current channel operation amplifier for current reconstruction. This floating point value called IOFFS has to be written to address 5 of the register file and is calculated as: $IOFFS = 2 + O \cdot 2^{-22}$. With O being the ADC's integer value with zero current.

In order to prevent an inverter shoot-through the PWM unit inserts an adjustable delay between the high-side and low-side active states. The delay value is set via register 3 and is a 9 bit wide multiple of the MCPU's clock cycle. The floating point value of this dead-time register is calculated as: $TD = 2 + t_{delay} \cdot f_{FPU} \cdot 2^{-22}$

A minimum sample acquisition time is guaranteed by setting the value of register 4, TAQU. The acquisition time is a 15 bit wide multiple of the MCPU's clock cycle. The floating point value of the acquisition time register TAQU is calculated as: $TAQU = 2 + t_{aqu} \cdot f_{FPU} \cdot 2^{-22}$

Bit	7	6	5	4	3	2	1	0	Register name	Comment
Write/Read	D0[7:0]									Data
Initial value	0	0	0	0	0	0	0	0		register D0 Bits [70]
Write/Read				D1[7:0]				M0DAT1 Bits [15	Data
Initial value	0	0	0	0	0	0	0	0		register D1 Bits [158]
Write/Read				D2[7:0]				M0DAT2	Data
Initial value	0	0	0	0	0	0	0	0		register D2 Bits [2316]
Write/Read				D3[7:0]				M0DAT3 reg	Data register D3 Bits [3124]
Initial value	0	0	0	0	0	0	0	0		
Write		1		ADR	[7:0]	1	1		M0ADR	Address
Initial value	0	0	0	0	0	0	0	0		register
Write	-	-	-	-	ADR[8]		OP[2:0]			Status and command
Read	-	-	-	-	-	-	-	START	MOSC	
Initial value	-	-	-	-	-	-	-	0		register
Write	-	-	-	-	-	-	-	0	DMCESEL	DMCE
Read	-	-	-	-	-	-	-	DMCESEL		select register
Initial value	-	-	-	-	-	-	-	0		Ū

5.4.4. Accessing the DMCE via the On-Chip Bus

Table 10: DMCE access registers

The DMCE has six dedicated 8 bit registers on the 8 bit on-chip bus, see table 10. The DMCE can only be accessed via the SPI interface if the IC is not locked, see section 5.7.1 page 37. The DMCESEL flag in the LSB of the DMCE select port determines which DMCE is accessed. If set to zero DMCE0, i.e. MCPU0, is accessed. Four data ports are used to write and read program or register data. The 7 bit wide register address is set using the address register. The 9 bit wide program memory address is set using the address register for the eight least significant bits and bit three of the command register for the most significant bit. Read and write operations are triggered by writing the status and command port's three least significant bits. All available commands are summarized in table 11.

Fully Integrated Single Motor Controller for Electrical Motors

When the DMCE is disabled the on-chip bus has read and write access to the program memory for debugging purposes.

Code	Description
0	No valid command, zero indicates finished command on register reads
1	Load command ROM value to data registers D0, D1, D2
2	Load data registers D0, D1, D2 to DMCE command ROM
3	Load data registers D0, D1, D2, D3 to DMCE data register
4	Load register value to data registers D0, D1, D2, D3
5	Load PWM cycle counter ¹ to data registers D0, D1, D2, D3
6	Load program counter to data register D0, D1
7	Load MCPU idle indicator to LSB of data register D0

Table 11: DMCE command register codes

Normally, program memory and register file information are stored in the EEPROM and loaded into the respective memory by the MCU.

Figure 13: Idle indicator

The idle indicator is used when monitoring register and is reset by the ready flag. While the idle flag is 1, register values remain stable (see figure 13). Therefore, it is guaranteed that only register values of a single PWM cycle are read at a time.

¹ Number of PWM cycles since reset

5.4.5. Power Stage Over-Current Protection

Figure 14: Over-current protection block schematic

In the event of over-current a dedicated hardware unit for the DMCE will turn off all logic outputs, indicate this error via a dedicated IO expander flag (see section5.2.16., p.12), and optionally trigger the shared DMCE/PFC interrupt of the MCU.

If the power stage connected to the AMG-XB404 provides a digital over-current fault indicator (OFI) input, the OFI input acts as a digital input with a logic threshold level of 0.5V nominally. If no digital over-current fault indicator flag is available, the OFI input acts as an analog comparator with a trip level of 0.5V nominally, which is the standard power stage module trip level. In this case the shunt resistor connected to the power stage needs to be dimensioned accordingly.

The AMG-XB404 can handle power stage modules having any combination of driver and overcurrent feedback polarity, see Figure 14 above. As described in section 5.2, p. 9 five dedicated signals control the polarity of drivers and over-current fault input, error indication and reset, and enabling of the driver outputs.

The over-current fault input signal OFI is low-pass filtered digitally, it needs to continually indicate an error for at least 1µs nominally to detect an over-current condition.

The pin order of the driver and high voltage feed-back pins can be configured freely as described in section 5.2.13., p. 11.

5.5. Power Factor Correction Controller (PFC)

The AMG-XB404 PFC's features:

- □ Fully configurable digitally controlled PFC
- □ Constant frequency, continuous conduction mode (CCM)
- □ 16 bit RISC core
- □ 256 words x 22 bits program memory
- □ 64 words x 16 bits data memory
- □ Adjustable PWM-Frequency, Range: 5kHz ~ 150kHz, Spread spectrum option
- □ On-chip over-current and short-circuit protection, brown-out control
- On-chip AC-phase-locked sinusoidal oscillator (45Hz ~ 65Hz) for improved AC line noise reduction

Figure 15: Simplified PFC controller application schematic

The AMG-XB404's PFC controller supports standard boost-topology power factor correction depicted in figure 15. It is designed to achieve IEC61000-3-2 level PFC performance when combined with appropriately dimensioned power electronics and line filtering. The PFC controller interacts directly with the ADC unit to acquire the rectified AC voltage, the DC bus voltage, and the rectified AC current value. It generates a pulse width modulated logic-level switching signal connected to an external gate driver circuit. A detailed block schematic of the PFC controller is shown in figure 16 p. 28.

The PFC controller is built around an autonomous 16 bit RISC processor core supporting 15 different instructions (see table 12 p. 29). It runs at the same high clock frequency as the DMCE. A 22 bits wide, 256 words deep SRAM serves as the processor's program memory. All instructions operate on a 6 bit data address space which is divided into address ranges for general purpose registers, constants, hardware ports, and values stored in a dedicated SRAM (see table 13 p. 31).

The unit includes a PWM generator that can be used to generate frequencies in a range of 5~150kHz. A hardware-based pseudo random number generator can be used to generate a spread-spectrum PWM signal. The PFC controller is able to set an interrupt line to indicate errors to the MCU. A hardware-based counter with an adjustable increment can be used to form a phase-locked signal that is synchronous to the mains frequency.

Figure 16: PFC controller block schematic

5.5.1. PFC Instruction Set Description

Figure 17: PFC command format

The 15 supported commands have a uniform width of 22 bits and the format shown in figure 17. A, B, C being register or memory locations upon which the operation OP is executed. Operations can also use the immediate values 11, 12, and 13 which are part of the command word. Table 12 p. 29 gives an overview of each command's function.

OP	Mnemonic	Operation	Clock cycles	Description
0	JMP	jump I1	1	jump to 8 bit address immediate /1
1	BRN	jump <i>II</i> if (<i>A</i> < 0)	1 (2)	jump to 8 bit address immediate <i>I1</i> if register/memory <i>A</i> is negative
2	BRP	$\operatorname{jump} II \operatorname{if}(A \ge 0)$	1 (2)	jump to 8 bit address immediate <i>I1</i> if register/memory <i>A</i> is positive
3	BRZ	jump II if (A=0)	1 (2)	jump to 8 bit address immediate <i>I1</i> if register/memory <i>A</i> is zero
4	ST	C = A	1 (2)	store register/memory A in register/memory C
5	ADD	C = A + B	1 (2)	add register/memory A and register B and store result in register/memory C
6	SUB	C = A - B	1 (2)	subtract register <i>B</i> from register/memory <i>A</i> and store result in register/memory <i>C</i>
7	DIV	ANGLE=CORD_I:CORD_Q	50	divide CORD_I by CORD_Q in CNT (1-15) iterations, result stored in ANGLE; for iterations register CNT is used, begin with setting ANGLE to Zero
8	CORD	$CORD_I = 23167 \cdot \sin\left(\frac{ANGLE}{2^{14}} \cdot \frac{\pi}{2}\right)$ $CORD_Q = 23167 \cdot \cos\left(\frac{ANGLE}{2^{14}} \cdot \frac{\pi}{2}\right)$	80	execute cordic algorithm on CORD_I, CORD_Q, etc. in CNT 1-15 iterations, result stored in CORD_I, CORD_Q; for iterations register CNT is used
9	MUL	$M = A \cdot B$	1 (2)	multiply two registers A , B or a memory A and a register B and store result in internal register M
10	SHMR	$C = M \gg I3$	1	shift multiplier result in internal register M right by /3 bits and store result in target memory/register C
11	SHL	$C = A \ll I3$	1 (2)	shift register/memory A left by /3 bits and store result in register/memory C
12	SHR	$C = A \gg I3$	1 (2)	shift register/memory A right by /3 bits and store result in register/memory C
13	STI	C=12	1	store immediate /2 (max. 12 bit) in register/memory C
14	SYNC	wait while (<i>PFC_IAC</i> == 0)	1	wait for PFC_IAC impulse

Table 12: PFC instruction set (The clock cycle values in braces denote the number of clock cycles if an SRAM value needs to be read during command execution.)

5.5.2. PFC Data Memory Description

The structure of the data memory is shown in table 13. The first seven addresses of the PFC controller's data memory hold general purpose registers which can be used in any combination to execute commands in a minimum number of clock cycles. Note that register values are modified by sine value computation and division. Consequently, their value must be rescued to data memory as required. Address 8 through 15 provide access to eight constant read-only values. Addresses 16 through 29 are used for hardware ports which are described hereafter.

ADDR	Туре	Name or value	Number of valid bits				
1		TMP	16				
2		CORD_I	16				
3		CORD_Q	16				
4	Registers	ANGLE	16				
5		ANGLESUM	16				
6		CNT	16				
7		TESTREG	16				
8		0	1				
9		1	1				
10		512	10				
11		8176	13				
12	Constants	9948	14				
13		700	10				
14		430	9				
15		4095	12				
16		VAC	14				
17		VDC	15				
18		IAC	10				
19		CORANG	15				
20		RR	11				
21	Hardware ports	RANDMAX	11				
22		PFC_IAC	1				
23		DELAY	12				
24		PFC_EN	1				
25		RC					
26		INTERRUPT	1				

ADDR	Туре	Name or value	Number of valid bits
27		DCNT	10
28		ENDL	13
29		ENDH	13
3263	SRAM	SRAM0 SRAM31	16

Table 13: Data memory overview (constants and hardware ports are used as registers)

The PFC controller uses center-aligned PWM signals as shown in figure 18. The start and end of a PWM cycle are determined by the PWM reference counter's maximum value which equals the value of the ENDH register divided by two.

The PWM period has thus a multiple of $ENDH/f_{FPU}$. ENDH is double buffered, i.e. its value can be set at any time by writing the value to the buffer ENDH but will only be applied to the internally used register ENDH in the next PWM cycle. Consequently, randomized duty cycles can be set asynchronously. The duty cycle of the PWM is determined by the ratio of ENDH and ENDLi, i.e. DC = ENDLi/ENDHi. ENDL is double buffered as well and will be updated to its internally used register ENDLi at the same time as ENDH to ENDH is (see figure 18).

Due to the low-pass filtered characteristic of the current signal its sampling must be delayed relative to the PWM signal. Setting the value of the DELAY register will postpone current sampling by an adjustable number of PFC clock cycles. Each sampling of the rectified AC current is followed by a sampling of the rectified AC voltage. The DC bus voltage value is updated whenever a new sample delivered to the DMCE core. The PFC has no means of triggering DC voltage value sampling.

Normally, calculation and sample acquisition are synchronized by the means of the PFC controller's SYNC operation which halts execution until the LSB of the PFC_IAC register becomes 1, indicating the completion of rectified AC current sampling. The PFC_IAC register can also be read directly.

Fully Integrated Single Motor Controller for Electrical Motors

AMG-XB404

Figure 18: PFC's PWM cycle

AD-converted, rectified AC voltage, DC voltage, and rectified AC current are buffered in and can be read from the registers VAC, VDC and IAC. As shown in figure 18 the rectified AC current is sampled in the middle of the PFC transistor's on-period which coincides with the zero-crossing of the PFC's reference counter. The PFC's PWM output PFC_PWM can be inverted by setting the PFCPOL bit in the IO port expander (see table 2 p. 14).

The PFC controller's pseudo random number generator makes use of an LFSR² capable of producing values with a length between four and eleven bits. A new random value will be generated each time RR is read. The random values' length is set through the RANDMAX register, its most significant set bit determines the length of the generated value. With N denoting the position of the most significant set bit, a pseudo random value between one and $(2^{(N+1)}-1)$ is calculated. If RANDMAX is smaller than 16 a four bit value will be generated. An optimum feedback seed is chosen automatically for any bit width. The value returned by RR may be greater than RANDMAX because only the most significant set bit is taken into account by the PFC algorithm. The PFC algorithm may re-read RR if a value greater than RANDMAX is encountered.

The read/write register RC returns a 10 bit wide reference counter value which is incremented once every DCNT clock cycles. DCNT has a width of ten bits and can be adjusted to obtain a variable frequency ramp signal on RC. RC can usually be employed to generate a clean reference sine value for power factor correction.

The PFC controller can signal an interrupt to the MCU by setting the LSB of the INTERRUPT hardware port to 1. Upon interrupt execution the interrupt flag must be cleared by either the PFC's algorithm or the MCU by setting the LSB of the INTERRUPT register to 0.

The PFC_EN hardware port is reserved for enabling and disabling power factor correction. The

² Linear feedback shift register

PFC algorithm is in PLL mode when the LSB of PFC_EN is set to 0. In this state the reference counter is synchronized with the mains frequency, the PWM output is not modulated. Power factor correction is started by setting the LSB of PFC_EN to 1. The PWM output will be modulated accordingly.

The value of the CORANG register returns a lookup-value of an incremental angle used when performing a CORDIC algorithm for sine and cosine calculation. The value is addressed by the four least significant bits of the CNT register. This register is meant for the CORDIC hardware's internal use only.

Addresses 32 to 63 of the data memory are used to access a 16 bit wide 32 words deep data SRAM. In contrast to data registers, reading constants and ports from the SRAM requires two clock cycles. Moreover, a data SRAM address may not be used in arbitrary combination with other values. See table 12 p. 29 for a list of all valid commands.

5.5.3. Accessing the PFC Controller via the On-Chip Bus

The PFC controller can only be accessed via the SPI interface if the IC is not locked, see section 5.7.1 page 37. As shown in table 14 two 8 bit registers, one data register, and one command and status register can be used to communicate with the PWM. When writing data to the PFC controller it is written to the data register before executing the write by sending the appropriate command to the command and status register. Data is read from the PFC controller by sending the appropriate read command to the command and status register and reading back one byte of the data register. Values wider than eight bits are transferred using multiple 8 bit transfers.

Bit	7	6	5	4	3	2	1	0	Register name	Comment
Write/Read	DAT[7:0]									Data
Initial value	0	0	0	0	0	0	0	0	PFCD	register
Write		CMD[7:0]								Status and
Read	ITCNT[6:0] START								PFCSC	register
Initial value	0	0	0	0	0	0	0	0		

Table 14: PFC controller registers

Command	Description
0x11	set address register
0x22	set buffer register [7:0] to value in data register
0x33	set buffer register [15:8] to value in data register
0x44	set buffer register [21:16] to value in data register
0x55	set data register to value in buffer register [7:0]
0x66	set data register to value in buffer register [15:8]
0x77	set data register to value in buffer register [21:16]
0x88	set buffer register [15:0] to PFC data RAM or register
0x99	set data from PFC data RAM or port to buffer register [15:0]
0xAA	set buffer register [21:0] to PFC program RAM
0xBB	set data from PFC program RAM to buffer register [21:0]
0xCC	enable PFC controller
0xDD	disable PFC controller
0xEE	set data register to value of the PFC program counter

Table 15: PFC bus interface command codes

5.6. Switch Mode Power Supply (SMPS)

The AMG-XB404 SMPS's features:

- Constant frequency, discontinuous conduction mode (DCM)
- □ Primary coil current control input
- One directly regulated output voltage
- □ Other output voltages (depending on the transformer) indirectly regulated
- □ Independent low frequency start-up clock source
- □ Automatic clock selector to enable system clock after start-up
- □ Clock-scaling for higher PWM-Frequencies (10kHz ~ 150kHz)
- □ Energy saving cycle-skipping mode for low levels of output power
- □ On-chip over-current protection with disable function

Figure 19: Example Switch Mode Power Supply application schematic (simplified)

The AMG-XB404's Switch Mode Power Supply operates in constant frequency, discontinuous conduction mode (DCM). Depending on the external circuitry it is capable of generating at least one variable output voltage. One of these voltages is directly controlled, the others indirectly. As an example in figure 19 an adjustable output voltage V_{AUX} of 15V is generated and controlled by using an external voltage divider (see R5 and R6 in figure 19). The output voltage V_{AUX} of the switching supply is regulated in such a way that the reference voltage level at the SWVI pin is equal to an internal reference. The SWVFB pin is used for the compensation of the sense amplifier. The primary coil's current control loop is closed by means of the SWI input pin.

The logic level signal SWDRV drives a simple external level shifting circuit consisting of T2 through T4, and R9 which in turn drives the power transistor T1 attached to the primary winding of the switching supply's transformer. The level shifter supply of nominally 15V is fed by the same

transformer winding as the output voltage $V_{\mbox{\scriptsize AUX}}.$

The constant switching frequency of the SMPS can be determined by a low-precision RC oscillator which is part of the SMPS, or by an adjustable, digitally generated reference clock signal which is adjustable via the IO expander (see section 5.2 p. 9). At start-up when no digitally generated clock is available, the RC oscillator is used. Typically, the RC oscillator's frequency is significantly lower than the optimum switching frequency to accommodate the oscillator's lack of precision. This means that less than the rated power can be drawn at start-up. To achieve full performance the SMPS must be operated using the well-defined, digitally generated switching frequency.

The SMPS is supplied through the SWVDD pin and must be biased for start-up. Zener diodes are used to provide the supply voltage for the level shifter and SMPS. The SMPS's internal reference voltage at the SWVREF pin needs to be stabilized using a capacitor connected to DGND. The SMPS shares the digital ground pin DGND with the rest of the IC.

As shown in figure 19 a secondary winding of the transformer can be used to derive a secondary, indirectly regulated output voltage, helping to improve over-all efficiency.

In the presence of low loads the SMPS enters a cycle skipping mode.

The SMPS is designed to limit the maximum power via the duty cycle of the switching signal. The shunt resistor R4 must be dimensioned in such a way that the transformer's specifications are not exceeded for the given switching frequency, the highest possible voltage across R4 (approx. 1.26V), and the given regulated output voltage. If this maximum load is exceeded for a duration of more than one second (typical) the SMPS's output will be disabled in order to protect the circuit. The secondary switching output is short-circuit protected by monitoring the power-on reset signal. If the voltage present at the digital 5V pin of the AMG-XB404 remains below the minimum operating voltage for longer than one second the SMPS's output will be disabled in order to protect the circuit the circuit.

The AMG-XB404 requires a power-on cycling to resume to normal operation after the occurrence of one of the error conditions described above.

5.7. Micro Controller Unit (MCU)

The AMG-XB404's MCU features:

- □ 8 bit AVR compatible RISC core
- □ 1kByte Data SRAM
- □ 16384 words x 16 bit program memory
- □ 8 MHz system clock
- Watch dog timer
- □ Three general purpose interrupt-generating timers
- □ Three channel ADC function
- □ 17 general purpose IOs

See section 5.11 page 60 for a summary of the MCU's instruction set.

5.7.1. Programming and Debug Interface

The programming interface is used to access the MCU's 16 bits wide and 16384 words deep program memory. Programs are executed from Shadow SRAM whose contents are loaded from an EEPROM after power-on reset. For testing purposes the loading process can be stopped, and restarted, by using commands 19 and 20 (see table 17, p. 38). The MCU executes the program starting at address 0 of the SRAM.

The unit is also used to debug the MCU core. The programming and debug interface is accessible via the System SPI interface only, the associated bus addresses are undefined for the MCU core.

Before any functionality of the programming and debug interface is available the IC must be unlocked. This is accomplished by setting the SRAM address to zero and sending the first 1024 words stored in program memory, which serve as a key, to the AMG-XB404. Unlocking is achieved by setting low byte and high byte to the data registers and issuing the unlock command for each data word (see Table 17 on page 38). The address will be incremented automatically. The lock/unlock status can be checked through the IO expander as described in section 5.2.2, p. 9.

Table 16 gives a summary of the registers associated with the programming and debug interface. An overview of the available commands is shown in table 17.

alpha microelectronics gmbh

Fully Integrated Single Motor Controller for Electrical Motors

Bit	7	6	5	4	3	2	1	0	Register name	Comment
Write				D0	7:0]					data
Read	D0[7:0]									register, lower byte
Initial value	0	0	0	0	0	0	0	0		
Write			data							
Read	D1[7:0]								SRD1	register, higher byte
Initial value	0	0	0	0	0	0	0	0		
Write				A0	7:0]				SRA0	address register, lower byte
Read				PCR	[7:0]					
Initial value	0	0	0	0	0	0	0	0		
Write				A1[7:0]					address
Read	MCU_CLK EN	EE_DONE	0			SRA1	register, higher byte			
Initial value	0	0	0	0	0	0	0	0		
Write	0	0	0 0 CMD[4:0]							status and
Read	0	0	0	0	0	EE_RDY	EE_FOUND	Status bit	SRSC	command register
Initial value	0	0	0	0	0	0	0	0		

Table 16: Program and debug interface registers

Code	Description	Purpose		
0	Write 16 bit data {D1,D0} to Shadow SRAM at address {A1,A0}	Shadow SRAM		
1	Load Shadow SRAM data to {D1,D0}	programming		
2	Enable MCU reset	MCI I report		
3	Disable MCU reset	MCOTeset		
4	Load low byte of MCU stack pointer to D0			
5	Load MCU status register to D0			
6	Load MCU general purpose register to D0			
7	Load MCU RAM to D0			
8	Set break point A[1:0] to {D1,D0}	MCLI debugging		
9	Erase break point A[1:0]			
10	Continue after break point and disable stepping			
11	Enable stepping			
12	Load high byte of MCU stack pointer to D1			
13	Load program counter value to {A1,A0}			
16	Check data in {D1, D0} against contents of EEPROM	IC unlock		
17	start SRAM March C- test	SRAM test		
19	start loading EEPROM to Shadow SRAM	EEPROM loading		
20	stop loading EEPROM to Shadow SRAM			

 Table 17: Command register codes for Program and Debug Interface

5.7.1.1. Program Memory Initialization

After power-on reset the IC probes for an EEPROM by sending a device address word and evaluating its acknowledge status.

If an EEPROM is detected, its contents will be copied to Shadow SRAM and the MCU's reset signal will be released.

If no EEPROM is found reset will not be released, and a "no detect" status will be indicated via the unit's status and command register.

5.7.1.2. Shadow SRAM Reads and Writes

For quick MCU program development the IC's Shadow SRAM can be read and written. Before reading and writing the MCU needs to be reset using command 2 detailed in Table 17. In order to execute writes to Shadow SRAM memory the 16 bits of data of the program word are written to the two 8 bit data registers, SRD0 and SRD1. Next, the 14 bit wide address is written to SRA0 and SRA1[5:0]. The actual write is initiated by writing command 0 to the status and command register SRSC.

In order to execute a read from Shadow SRAM memory, the 14 bit address is written to SRA0 and SRA1[5:0]. By writing command 1 to SRSC the SRAM read is executed and the 16 bits of data can be read from SRD0 and SRD1 via the 8 bit on-chip bus after SRSC[0] has been read as 0.

5.7.1.3. EEPROM Rads and Writes

To permanently store program and configuration data the EEPROM is used. Each byte inside the EEPROM corresponds to one half of a Shadow SRAM program word. EEPROM address 0 contains the low-byte of Shadow SRAM address 0, EEPROM address 1 contains the high-byte of Shadow SRAM address 0, EEPROM address 2 contains the low-byte of Shadow SRAM address 1, etc.

Serial two-wire communication is performed via port 40 of the IO expander (see table 2b, p. 14), and is activated by enabling engineering mode via port 1 of the IO expander. Figure 20 shows the start and stop conditions

Figure 20: Two-wire communication start stop conditions

State changes of the serial data line SDA when the serial clock SCL is HIGH indicate either the start condition (falling edge of SDA) or the stop condition (rising edge of CLK). Consequently, SDA may only change its state when SCL is LOW during data transfers, master (IO expander) and slave (EEPROM) must sample SDA when SCL is HIGH (see figure 20).

Every start condition is followed by an address cycle as shown in figure 21. The 7 bit wide address is transmitted with its MSB first and is followed by the read/write flag. Data is transmitted from IO expander to EEPROM if this flag is set to 0 and from slave to master if set to 1. The EEPROM acknowledges an address cycle by pulling SDA to LOW during the clock cycle following the read/write flag. In slave mode the two wire communication interface will only acknowledge the address cycle if the sent address and the address mask are valid. An address cycle can be followed by a data cycle or a stop condition.

Figure 21: Serial two-wire communication address cycle

As shown in figure 22 a data cycle contains eight data bits and one acknowledge bit. Data is sent MSB first. The receiving side acknowledges the received data by pulling SDA low.

	-		8	8-Bit da	ita			>
resulting SDA	Дмя	вХ	X	X	X	X	X	LSB ACK
SDA from transmitter	X	X	X	X	X	X	X	
SDA from receiver								
SCL from IO expander								
Figure 22 cycle	: Seria	al tv	/О-И	vire	con	าฑน	nica	tion data

When data is sent from IO expander to EEPROM the EEPROM may set STOPREG to send a nonacknowledge after receiving the next byte from the IO expander, thus indicating that it will receive no more data. The EEPROM will enter a passive state after STOPREG has been set until a start condition is received. If data requested by the IO expander is not ready to be sent by the EEPROM the EEPROM will pull the serial clock to LOW until the data is ready. This is the only case in which the EEPROM influences the serial clock.

All serial communication is initiated by a device address word (see figure 23) indicating the EEPROM address and the read/write access mode, writes have the LSB set to 0, reads have the LSB set to 1. For the AMG-XB404 the EEPROM address is always zero. The device address word will be acknowledged if the IC is ready.

Figure 23: Device address word

EEPROM Writes

The 256 kBit EEPROM is capable of up to 64-byte page writes. A page write operation requires the device address word followed by a 16 bits wide start byte address, up to 64 bytes of data, and a stop condition to initiate a self-timed EEPROM write. This is shown in figure 24. It can be seen that all data and address bytes need to be acknowledged by setting the data line low. Writes start at the given byte address, the address is incremented automatically.

After initiating a page write the EEPROM will not acknowledge requests for typically 5ms. Consequently, waiting for the end of the write operation consists of sending a start condition followed by a device address word, and evaluating the acknowledge non-acknowledge status. The next write or read command may be sent after receiving an acknowledge signal from the EEPROM.

Note: *Don't CARE bits.

Figure 24: Write procedure

EEPROM Reads

As shown in figure 25 EEPROM reads consist of a dummy write operation, consisting of a "write" device address word followed by a 16 bits wide start byte address, followed by a second start condition and a "read" device address word.

Following this command sequence the EEPROM will return bytes starting at the specified address, and increment the read address for every received acknowledge. The maximum byte address is 32767, after that the address will "roll over" to address 0. The sequential read operation is terminated by sending a stop condition.

Note: *Don't CARE bits.

Figure 25: Read procedure

The serial bus' timing is shown in figure 26 below, while the timing values can be found in chapter 8.3., p. 68.

Figure 26: EEPROM serial bus timing

5.7.1.4. March C- SRAM Test

A structural SRAM test is started by using command 17. During memory test data register SRD0 is read back as 1. When the test is finished SRD0 indicates the test result, 0 for pass, and 2 for fail.

5.7.1.5. EEPROM Calibration and User Data Space

Located at the bottom of the EEPROM there is a file system storing calibration data regarding the ADC, RC oscillator and others, along with DMCE and PFC firmware. Calibration data include the FLL divider, as well as the ADC offset and gain values. After power-on reset the EEPROM's content is copied to the Shadow SRAM, this includes the calibration and user data space.

Figure 27: Calibration and user data space

The data space is organized in records (an example is shown in figure 27). Every record consists of a 1 Byte ID number and a data item, which depending on the ID number has a certain length. Records are read ID first and then data. Figure 28 shows the record format.

Figure 28: Record format

Once an ID is reserved it cannot be deleted. There are four categories of ID's to differentiate data field lengths, see table 18.

ID number	Data length
0x010x3F	1 Byte
0x400x7F	2 Byte
0x800xBF	4 Byte
0xC00xFE	n Byte

Table 18: Types of ID's

ID numbers 0x01 to 0x1F and 0xC8 to 0xDF can be used for specific, application related data, such as constants and parameters for example. ID numbers 0x00, 0xE0 to 0xFE are reserved. ID number 0xFF is used to indicate the end of the data space.

Reading the data space starts at the highest possible address of the Shadow SRAM and continues until ID number 0xFF is found. An ID overview is shown in table 19.

ID number	Comment				
0x00	reserved				
0x010x1F	available for custom data				
0x2B	Band gap reference adjustment value				
0x2C0x35	reserved				
0x360x3F	ADC offset with buffering Channels: VDC, VAC, 70				
0x400x5F	available for custom data				
0x65	ADC VDD calibration value				
0x66	ADC temperature calibration value				
0x67	FLL calibration parameter 2				
0x68	FLL calibration parameter 1				
0x69	FLL calibration parameter 0				
0x6A	FLL temperature calibration value				
0x6B	FLL divider				
0x6C0x75	ADC gain without buffering Channels: VDC, VAC, 70				
0x760x7F	ADC gain with buffering Channels: VDC, VAC, 70				

ID number	Comment				
0x800x9F	available for custom data				
0xBF	time stamp (seconds since epoch)				
0xC0	DMCE0 program				
0xC1	DMCE0 registers				
0xC2	reserved				
0xC3	reserved				
0xC4	PFC program				
0xC5	PFC registers				
0xC6	PowerStage0 pin order				
0xC7	reserved				
0xC80xDF	available for custom data				
0xE00xFE	reserved				
0xFF	end of data space				

Table 19: ID overview

5.7.1.6. Debug Interface

The debug interface allows read access to the MCU's status register, stack pointer, program counter, general purpose registers, and RAM (see commands 4, 5, 6, 7, 12, 13 in table 17). For accessing general purpose registers a 5 bit address {SRA0[4:0]}, and for RAM data a 10 bit address {SRA1[1:0],SRA0} has to be specified.

Four break points can be set and enabled using command 8. When the program counter reaches a break point the MCU's clock is stopped. This is indicated by MCU_CLKEN going LOW (see table 16). The continue command 10 is used to re-enable the MCU's clock.

A stepping mode is also available. In this mode the MCU clock will be stopped after each command. The stepping mode is enabled using command 11. The MCU clock is re-enabled by using the continue command.

5.7.2. General Purpose Input Output Interface (GPIO)

The GPIO block interfaces the IC's general purpose IO pins, grouped in 8 bit wide IO ports. The AMG-XB404 features 17 general purpose IOs(see figure 29). The GPIO block relays IO pins to UART, TWI and SPI as shown in table 20.

IO pin	Signal	Direction	Condition	Comment				
PORTB[0]	UART TX	0		UART data output enabled if UARTEN=1, else UART disabled				
PORTB[1]	UART RX	I	UARIEN	UART data input enabled if UARTEN=1, else UART disabled				
PORTB[2]	TWI SCL	IO		TWI clock pin enabled if TWIEN=1, else TWI disabled				
PORTB[3]	TWI SDA	IO	IVVIEN	TWI data output enabled if TWIEN=1, else TWI disabled				
PORTB[4]	TMR 0 OC	0	OC0 ^ PORTBO[4]	Timer 0 output compare				
PORTB[5]	TMR 1 OC	0	OC1 ^ PORTBO[5]	Timer 1 output compare				
PORTB[6]	TMR 2 OC	0	OC2 ^ PORTBO[6]	Timer 2 output compare				
PORTC[2]	TMR 2 IC	I		Timer 2 input capture, always connected				
PORTC[4]	SPI SCS	IO		SPI chip select pin enabled if SPIEN=1, else SPI disabled				
PORTC[5]	SPI SDO	0	SPIEN	SPI data output pin enabled if SPIEN=1, else SPI disabled				
PORTC[6]	SPI SDI	I		SPI data input pin enabled if SPIEN=1, else SPI disabled				
PORTC[7]	SPI SCLK	IO		SPI clock pin enabled if SPIEN=1, else SPI disabled				

Table 20: XB404 dedicated function GPIO ports

PORTB[0] and PORTB[1] become TX and RX line of the UART if UARTEN is set. The polarity of the TX line can be inverted by setting PORTBO[0] to 1 for non-inverted operation it needs to be set to 0. The polarity of the RX line is set via PORTBO[1] in the same way. See section 5.7.3 p. 47 for a detailed description of the UART.

PORTB[2] and PORTB[3] become the two wire interface's SCL and SDA pins when the TWI is enabled. See section 5.7.5 p. 49 for a detailed description of the TWI.

PORTB[6:4] are used for the three timers' output compare signals. PORTB[5] is connected to 8 bit Timer0, PORTB[5] is connected to 8 bit Timer1 and PORTB[6] is connected to 16 bit Timer2. The value of the output compare flag is xor-ed with the value in PORTBO[6:4] respectively, thus allowing to invert the signal as required.

PORTC[7:4] are used for the SPI controller's SCLK, SCS, SDI, and SDO pins. The polarity of the clock can be inverted by setting PORTCO[4] to 1, the standard non-inverting behaviour is achieved by setting PORTCO[4] to 0. See section 5.7.4 p. 48 for a detailed description of the SPI.

PORTC[2] is connected to Timer2. If PORTCO[2] is set to 0 rising signal edges are detected by the timer, if set to 1 falling signal edges are detected. See section 5.7.6 p. 52 for a detailed description of all timers.

PORTE[2:0] is shared with the general purpose ADC channels see section 5.3 page 16 for details.

Note that dedicated GPIO functions may override output pins so these pins are not controlled by the output buffer register. When reading a port, the actual input is read instead of the buffer content, even if the port is configured to be an output. This needs to be considered when doing bit-manipulation on GPIO ports with special functions enabled. For example PORTBO[0] determines TX polarity when UARTEN is set. When reading back the port, PORTB[0] keeps the actual TX line instead of the TX polarity setting. So these bits must always be written as intended, not as read.

Figure 29: XB404 GPIO overview

alpha microelectronics gmbh

Fully Integrated Single Motor Controller for Electrical Motors

Bit	7	6	5	4	3	2	1	0	Port	Comment
Write	PORTBO[7] OC2 OC1 OC0 PORTBO[3:2] UARTRXPOL UARTTXPOL									
Initial value	0	0	0	0	0	0	0	0	в	Port B data
Read	PORTBI[7:0]									
Write	PORTCO[7:5] SCKLIPOL PORTCO[3] IC2POL IC1POL IC0POL									
Initial value	0	0	0	0	0	0	0	0	С	Port C data register
Read				PORT	CI[7:2]					
Write				PORT	BE[7:0]					Port B
Initial value	0	0	0	0	0	0	0	0	в	output enable
Read				PORT	BE[7:0]					register
Write				PORT	CE[7:2]					Port C output enable
Initial value	0	0	0	0	0	0	0	0	с	
Read	PORTCE[7:2]									register
Write				PORT	TIE[7:0]					Interrupt enable register
Initial value	0	0	0	0	0	0	0	0	-	
Read				PORT	TIE[7:0]				1	
Write				PORT	IFR[7:0]					
Initial value	0	0	0	0	0	0	0	0	-	Interrupt flag register
Read				PORT	IFR[7:0]					
Write				PORT	EO[2:0]					
Initial value	0	0	0	0	0	0	0	0		Port E data register
Read	PORTEI[2:0]								E	
Write	PORTEE[2:0]								E	Port E
Initial value	0	0	0	0	0	0	0	0		output enable
Read	PORTEE[2:0]									register

Table 21: XB404 GPIO registers

5.7.3. Universal Asynchronous Receiver Transmitter Interface (UART)

The UART's IO pins are mapped to GPIO pins if enabled (see figure 29). The baud rate is adjustable. All data is sent and received in blocks of a start bit, eight data bits, and a stop bit (see figure 30).

Figure 30: UART data transfer

Data is sent by writing a byte to the transmit buffer register TXB, the most recent received byte can be read from the receive buffer RXB, see table 32 p. 58.

The UART is configured by writing to the control and status register UCSR. As shown in table 23 the interface is enabled by setting UART_EN to 1, the baud rate is adjusted by setting the lower three bits as shown in table 22. If the ready flag RDY is set to 1 the interface has sent all pending data and is ready for another transmission. If the stop bit of an incoming transmission is not correct a framing error is indicated by the framing error flag FERR being set to 1. An overflow error will be indicated by the flag OERR. It is set to 1 if a byte is received before the previous byte has been read from RXB.

The RX and TX polarities can be set by writing UARTRXPOL respectively UARTTXPOL (see

table 21 p. 47). If UARTRXPOL is set to 1, the RX line is interpreted active low, otherwise it's interpreted active high. If UARTTXPOL is set to 1, data is sent out active low, otherwise it's sent out active high. Active high is the default setting for both lines.

The UART has got two interrupt signals that can be enabled as shown in section 5.2.22 p. 14. An RX interrupt is generated when a new byte is received and stored in RXB, the interrupt flag is reset by reading the RX buffer. A TX interrupt is generated when the byte in TXB has been sent, the interrupt flag is reset by writing to the TX buffer.

Code	BAUDRATE[2:0]	Baud rate		
0	000	9600		
1	001	19200		
2	010	38400		
3	011	57600		
4	100	115200		

Table 22: UART baud rates

7	6	5	4	3	2	1	0	Register name	Comment
UART_EN	-	-	-	-	E	BAUDRATE[2:	0]		Status and
UART_EN	RDY	FERR	OERR	0	BAUDRATE[2:0]			UCSR	control register
0	0	0	0	0	0	0	0		
		Receive							
			RXB	[7:0]				RXB	buffer
0	0	0	0	0	0	0	0	1	
TXB[7:0]									Transmit
TXB[7:0]								ТХВ	buffer
0	0	0	0	0	0	0	0	1	
	7 UART_EN 0 0	7 6 UART_EN - UART_EN RDY 0 0 0 0 0 0 0 0 0 0	7 6 5 UART_EN - - UART_EN RDY FERR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 6 5 4 UART_EN - - - UART_EN RDY FERR OERR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 6 5 4 3 UART_EN - - - UART_EN RDY FERR OERR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 6 5 4 3 2 UART_EN - - - - E UART_EN RDY FERR OERR 0 E 0 0 0 0 0 E 0 0 0 0 0 E 0 0 0 0 0 E 0 0 0 0 0 0 E 0 0 0 0 0 0 E E 0 0 0 0 0 0 0 E 0 0 0 0 0 0 E E 0 0 0 0 0 0 0 E	7 6 5 4 3 2 1 UART_EN \cdot \cdot \cdot \cdot \cdot $BAUDRATE[2: UART_EN RDY FERR OERR 0 BAUDRATE[2: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 $	7 6 5 4 3 2 1 0 UART_EN	7 6 5 4 3 2 1 0 Register name UART_EN

Table 23: UART registers

5.7.4. Serial Parallel Interface (SPI)

The SPI's IO pins are mapped to GPIO pins (see figure 29 p. 46). The SPI can be run as a master or a slave. In master mode the MCU can communicate with one or more SPI slaves. In slave mode an SPI master can control the SPI. There is a control and a data register which are shown in detail in table 24.

Figure 31: SPI timing

SPI chip select SCS and SPI clock SCLK are always driven by the master. They frame and time the transmission. Data is transferred in blocks of up to eight bits, data is always sent out synchronously via SDO and received via SDI using a single 8 bit shift register controlled by the serial clock. Figures 31 and 32 show an 8 bit SPI transmission. By default SDO and SDI are sampled on the rising edge of SCLK, sampling will take place on the falling edge of SCLK if the clock's polarity is inverted in the GPIO register (see section 5.7.2 p. 44).

Bit	7	6	5	4	3	2	1	0	Register name	Comment
Write			Data							
Read	DATA[7:0]								SPIDAT	register
Initial value	0	0	0	0	0	0	0	0		
Write	-	MOD	MODE[1:0]		MSBLSB	CSEN	-	-		Control
Read	-	MODE[1:0]		SPIEN	MSBLSB	CSEN	WCOL	TRF	SPICTRL	register
Initial value	0	0	0	0	0	0	-	-		

Table 24: SPI registers

Figure 32: SPI communication principle

To enable the SPI the flag SPIEN has to be set to 1. With the MSBLSB flag set to 1 the MSB will be transferred first, otherwise the LSB is transferred first. The flag CSEN controls the usage of the chip select line, if set to 1 chip select is used, otherwise chip select will be ignored.

WCOL and TRF are read-only flags for write collision WCOL and readiness for next transmission TRF. In master mode a collision occurs if new data is written to SPIDAT while the previous transmission has not been finished. The SPI's mode controls master/slave operation and the serial clock speed in master mode. It is selected by setting MODE[1:0] as shown in table 25.

CTRL[6]	CTRL[5]	Clock speed
0	0	2 MHz
0	1	500 kHz
1	0	125 kHz
1	1	-
	CTRL[6] 0 1 1	CTRL[6] CTRL[5] 0 0 0 1 1 0 1 1

Table 25: SPI mode selection

The SPI has got a single interrupt flag which can be enabled through the interrupt control register (see section 5.2.22 p. 15). The interrupt is raised after each completed transmission. The interrupt flag is cleared by reading from or writing to SPIDAT.

5.7.5. Two Wire Interface (TWI)

The GPIO's PORTB[2] and PORTB[3] become the two wire interface's serial clock SCL and serial data SDA pins when the TWI is enabled by setting TWENA in CONFIG_REG to 1 (see table 26). A pull-up resistor is required at each pin. The two wire interface can be configured to operate in master or slave mode by setting MODE in CONFIG_REG, master mode is enabled by setting the flag to 1. The TWI master can initiate writes to and reads from a TWI slave.

The TWI address register and TWI address mask register share the same MCU bus address. The MSB determines which register is set if written to. Reading the register returns the TWI address register, the address mask register cannot be read. If the address set by the master (ADDR) masked by TWIAM and the address set in the slave TWIA masked by TWIAM match, the address is considered valid. This can be expressed as $ADDR \land TWIAM = TWIA \land TWIAM$, \land denotes a bit-wise AND. With a TWIAM set to binary 1111100 addresses 124, 125, 126 and 127 can be addressed.

Bit	7	6	5	4	3	2	1	0	Register name	Comment
Write	TWENA	-	MODE	RW	STARTREG	STOPREG	PRESCA	LER[1:0]		Configuration register; write-only
Initial value	0	-	1	0	0	0	0	0	TWIEC	
Read	FLAG	RSTART	RSTOP	RW	STARTREG	STOPREG	DATAWF	DATARF	IWISC	Status register; read-only
Initial value	0	0	0	0	0	0	0	0		
Write	1 ADDRM[6:0]									Address mask register
Write	0				ADDR[6:0]				TWIADR	Address register
Read	0				ADDR[6:0]					
Initial value	0	0	0	0	0	0	0	0		
Write				DAT	A[7:0]					Data register
Read				DAT	A [7:0]				TWIDAT	
Initial value	0	0	0	0	0	0	0	0		

Table 26: TWI registers

State changes of the serial data line SDA when the serial clock SCL is HIGH indicate either the start condition (falling edge of SDA) or the stop condition (rising edge of CLK). Consequently, SDA may only change its state when SCL is LOW during data transfers, master and slave must sample SDA when SCL is HIGH (see figure 33).

Every start condition is followed by an address cycle as shown in figure 34. The 7 bit wide address is transmitted with its MSB first and is followed by the read/write flag. Data is transmitted from master to slave if this flag is set to 0 and from slave to master if set to 1. The slave acknowledges an address cycle by pulling SDA to LOW during the clock cycle following the read/write flag. In slave mode the TWI will only acknowledge the address cycle if the sent address and the TWI's address mask are valid. An address cycle can be followed by a data cycle or a stop condition.

Figure 34: TWI address cycle

As shown in figure 35 a data cycle contains eight data bits and one acknowledge bit. Data is sent MSB first. The receiving side acknowledges the received data by pulling SDA low.

Figure 35: TWI data cycle

When data is sent from master to slave the TWI slave may set STOPREG to send a nonacknowledge after receiving the next byte from the master, thus indicating that it will receive no more data. The slave will enter a passive state after STOPREG has been set until a start condition is received. If data requested by the master is not ready to be sent by the slave the slave will pull the serial clock to LOW until the data is ready. This is the only case in which the slave influences the serial clock.

Setting RW in CONFIG_REG to 0 in master mode will send data from master to slave. If RW is set to 1 data will be received by the master. The transmission of the data held in DATA_REG is started by setting STARTREG to 1. The transmission will be stopped after sending any pending data by setting STOPREG to 1. The 2 bit PRESCALER determines the serial clock speed in master mode (see table 27).

PRESCALER[1:0]	Comment						
0	400 kHz serial clock						
1	200 kHz serial clock						
2	100 kHz serial clock						
3	50 kHz serial clock						

Table 27: Serial clock settings

The status register STATUS_REG is used to monitor transmissions (see table 26 p. 50). The FLAG bit indicates a transmission error i.e. non-acknowledge. In slave mode RSTART and RSTOP are set to 1 by the TWI upon a received start respectively stop condition and will be reset automatically after the address cycle is done. DATAWF rises to 1 if data can be written to DATA_REG. DATAWF will be set to 0 if data is written to DATA_REG. DATARF rises to 1 when received data can be read from DATA_REG. DATARF will be set to 0 if data is read from DATA_REG.

The TWI's interrupt is set when DATAWF or DATARF are set. The interrupt flag remains set until DATA_REG is read from or written to. It may also be cleared by disabling the TWI module via the CONFIG_REG's TWENA bit.

5.7.6. General Purpose Timers

The AMG-XB404 has got two 8 bit timers and one 16 bit timer. All timers are controlled by the MCU via the on-chip bus. Each timer has got one dedicated interrupt generated by match and input capture timer events. Timer interrupts can be enabled independently. Interrupt flags are cleared automatically upon timer interrupt execution or IC reset. Table 29 lists all timer-related registers. Each timer can be configured to use an individual system clock pre-scaler ratio.

Timers have got an 8 or 16 bit wide counter register CNT, which can be read from and written to, and an output compare register OCR, containing the compare value for the timer match function, which also can be read from and written to. Each timer's control register contains the individual timer's pre-scaler setting in its least significant 3 bits (see table 28). The timer will be disabled if the pre-scaler is set to 0.

PRESCALER[2:0]	Timer reference clock
0	timer off
1	MCU clock frequency
2	MCU clock frequency divided by 2
3	MCU clock frequency divided by 4
4	MCU clock frequency divided by 16
5	MCU clock frequency divided by 64
6	MCU clock frequency divided by 256
7	MCU clock frequency divided by 512

Table 28: Clock modes for 8 bit and 16 bit timers

If the timer is enabled the timer's counter register will be incremented according to the pre-scaler setting. If the counter overflows CNT changes from 65535 to 0 (16 bit timer) or 255 to 0 (8 bit timers).

Each timer has got two principle modes, match mode and input capture mode. Match mode is always active. In addition input capture mode can be enabled if input capture enable ICEN is set to 1.

In match mode (see figure 36) the interrupt flag is set if CNT equals OCR, and interrupt enable INTEN in TCR is set to 1. If reset on match ROM in TCR is set to 1 CNT will be reset to 0. An interrupt on match is only generated if input capture enable ICEN is set to 0.

Figure 36: Timer match mode (assuming immediate interrupt handling)

By setting OCEN and the according GPIO PORTB output enable to 1 the output compare output OC is enabled (see table 21 p. 47). OC is set to 0 on reset and will be toggled on match if reset on match is enabled. By writing to TCR[4] OC can be pre-set. If reset on match is disabled OC is set to 0 on match and set to 1 on counter overflow.

Figure 37: Timer input capture mode (assuming immediate interrupt handling)

In input capture mode (ICEN=1, see figure 37) an interrupt is generated if a rising edge at the input capture input pin IC is detected and interrupt enable INTEN in TCR is set to 1. CNT will be stopped and can be read via the bus. By writing 1 to TCR[6] CNT will continue to be incremented.

Bit	7	6	5	4	3	2	1	0	Register name	Comment	
Write	TMRIE	ICEN	OCEN	OCIR	RESOM	PI	RESCALER[2	:0]		8 bit Timer	
Read	TMRIE	ICEN	OCEN	OCIR	RESOM	PI	RESCALER[2	:0]	TCR8	register	
Initial value	0	0	0	0	0	0	0	0			
Write				CNT	[7:0]					8 bit Timer	
Read				CNT	[7:0]				TCNT8	counter register	
Initial value	0	0	0	0	0	0	0	0			
Write				OCF	R[7:0]					8 bit Timer	
Read				OCF	R[7:0]				OCR8	output compare register 16 bit Timer control register	
Initial value	0	0	0	0	0	0	0	0			
Write	TMRIE	ICEN	OCEN	OCIR	RESOM	PI	RESCALER[2	:0]			
Read	TMRIE	ICEN	OCEN	OCIR	RESOM	PI	RESCALER[2	:0]	TCR16		
Initial value	0	0	0	0	0	0	0	0			
Write TCNTL[7:0]										16 bit Timer	
Read				TCNT	Ľ[7:0]				TCNTL16	counter register; low byte	
Initial value	0	0	0	0	0	0	0	0			
Write				TCNT	H[15:8]				16	16 bit Timer	
Read				TCNT	H[15:8]				TCNTH16	register;	
Initial value	0	0	0	0	0	0	0	0		high byte	
Write				OCR	L[7:0]					16 bit Timer	
Read				OCR	L[7:0]				OCRL16	compare	
Initial value	0	0	0	0	0	0	0	0		register; lower byte	
Write				OCRH	I[15:8]					16 bit Timer	
Read				OCRH	I[15:8]				OCRH16	output compare register; higher byte	
Initial value	0	0	0	0	0	0	0	0	1		

Table 29: General purpose timer registers, registers for second 8bit timer are identical to first and not shown

5.7.7. Watchdog Timer

The dedicated watchdog timer can be used to restart program execution starting at the reset vector address (zero) if the MCU fails to update it periodically. The watchdog is controlled by the watchdog timer control register WDTCR, see table 30.

The watchdog is enabled by setting the watchdog enable flag WDE to 1. The time-out value is set

using the watchdog pre-scaler WDP, the time-out value is calculated as: $t_{\rm TO} = \frac{2^{(17+WDP)}}{f_{MCU}}$

Following a regular power-on reset the watchdog time-out flag WDTO is set to 1. If the reset vector is executed following a watchdog time-out WDTO will be set to 0, thus indicating a watchdog time-out event.

Bit	7	6	5	4	3	2	1	0	Register name	Comment
Write	-	-	-	-	WDE		WDP[2:0]		Watchdog	
Read	-	-	-	WDTO	WDE	WDP[2:0]			WDTCR	control
Initial value	-	-	-	1	0	0	0	0		register

Table 30: Watchdog timer control register

5.8. System Clock

The AMG-XB404 system clock's features:

- □ supports three different system clock modes
- □ nominal 64MHz system clock
- □ internally generated clock can be put out to feed external circuitry

Figure 38: Oscillator and FLL block schematic

The clock mode is set by connecting the CLKSEL and XO_OSEL pin to D5V or DGND as shown in table 31:

- On-chip RC-ramp-based, Frequency Locked Loop (FLL) -controlled, VCO-generated onchip clock
- Crystal or resonator oscillator-based, FLL-controlled, VCO-generated on-chip clock
- · Clock input from external clock input pin

CLKSEL	XO_OSEL	CLKIO	Description
0	0	Input	External clock input signal via CLKIO pin
0	1	Output/Off	Internal RC-ramp based clock generation
1	(Crystal)	Output/Off	Internal crystal/resonator based clock generation

Table 31: Clock source configuration

The recommended clock source of the IC uses an integrated RC-ramp of nominally 60 µs for adjusting the on-chip VCO. As shown in figure Fehler: Referenz nicht gefunden this ramp signal serves as the time standard for the FLL block which generates the system clock. The FLL block uses a 13 bit wide divider ratio specifying the number of VCO clock cycles per RC-ramp. The MCU clock frequency is generated by dividing the VCO's clock frequency by eight, consequently all system clocks are in-phase signals.

Initially, the FLL divider ratio is set to 2048, resulting in an approximately 48 MHz clock output for a typical RC-ramp at room temperature. The FLL's divider ratio is trimmed via the IO port expander (see section 5.2 p. 9) to achieve the target clock frequency of 64MHz.

A clock rate error of less than ±2% over the operating temperature range can be achieved by

providing a temperature-dependent FLL divider ratio based on a polynomial function of chip temperature. The initial divider value and the temperature coefficient are measured and stored in the EEPROM during final test. They can be used by the MCU to perform temperature compensation in combination with the ADC value of the temperature channel.

An external 8MHz crystal or resonator can be attached to the pins XO and XO_OSEL. The CXO clock signal generated by the inverter-based oscillator is divided by 256 to obtain a 32µs time standard. In combination with the default divider ratio a system clock of 64MHz results and no adjustments to the divider ratio are required.

The AMG-XB404's system clock signal can also be input via the CLKIO pin when configured appropriately.

In order to prevent external noise from interfering with the clock selection setting, the CLKLOCK flag can be set via the IO expander. When set, the flag will preserve the selection preset at the time of setting CLKLOCK, see section 5.2., page 9 for details.

When an internal clock source is selected the CLKIO pin acts as a clock output, allowing for system clock monitoring. CLKIO output may be disabled by setting CLKOFF within the IO expander, see section 5.2., page 9 for details.

5.9. Power-On and System Reset

Figure 39: AMG-XB404 reset scheme block schematic

The AMG-XB404 has got a dedicated active-LOW reset signal input pin named NRESIN. The reset input is low-pass filtered for improved noise rejection. Any reset impulse shorter than 2µs (typical) will be discarded.

As shown in figure 39 system reset must be handled differently for externally and internally generated clock signals. For internally generated clocks the active-LOW FLL lock signal at the output pin NRESOUT must be connected to NRESIN. For externally generated clocks the active-LOW output pin NPOR of the power-on reset unit must be connected to NRESIN. An external reset circuit may also feed NRESIN directly but must ensure that the IC operating conditions are guaranteed as discussed below.

The power-on reset unit monitors the supply voltage D5V and keeps the FLL unit reset while the supply voltage is too low for supplying the AMG-XB404. When D5V rises above the safe threshold voltage V_{POR} the IC's FLL reset signal POR will be released with power-on delay of t_{POR}. The FLL will then start to adjust the AMG-XB404's VCO and indicated a frequency lock by setting its lock signal to LOW, the lock signal can be observed at pin NRESOUT. The start-up to lock time of the FLL is defined as t_{LOCK} .

If D5V drops below the brown-out voltage V_{BO} the power-on reset unit will trigger a reset of the FLL unit which will in turn reset the digital core of the AMG-XB404. The AMG-XB404 will resume operation with the power-on reset cycle described above as soon as D5V rises above V_{POR} . Power-on reset and brown-out reset scenarios are detailed in figure 40.

Figure 40: Power-on reset and brown-out reset timing

5.10. On-Chip Bus Register Summary

INDIRECT 10 Bit ADDRESS	DIRECT 6 Bit ADDRESS	REGISTER NAME	COMMENTS	page	INDIRECT 10 Bit ADDRESS	DIRECT 6 Bit ADDRESS	REGISTER NAME	COMMENTS	page
0x0 ~ 0x1F		R0~R31	General purpose registers		0x3B	0x1B	PORTCE	GPIO port C	
0x21	0x1	MODATO	M0 data register 0		0x3C	0x1C	PORTDE	GPIO port D output enable register	-
0x22	0x2	M0DAT1	M0 data register 1		0x3D	0x1D	PORTIE	GPIO interrupt enable	_
0x23	0x3	M0DAT2	M0 data register 2		0x3E	0x1E	PORTIFR	GPIO interrupt flag	1
0x24	0x4	M0DAT3	M0 data register 3					indicator and reset register	
0x25	0x5	MOADR	M0 address register		0x3F	0x1F	IOEXPD	IO expander data	
0x26	0x6	M0SC	M0 status and		0x30	0x20			
0x27	0x7	PECD	PEC data		0x41	0x21	WDTCR	watchdog timer control register	
0x28	0x8	PECSC	PEC status and command	-	0x42	0x22	TCR0	timer 0 control register	
0x28	0x9	MCPUSEL	DMCE select register		0x43	0x23	TCNT0	timer 0 counter value register	-
0x2A	0xA	ADCCONF	ADC configuration		0x44	0x24	OCR0	timer 0 output compare value register	-
		ADCIRES	ADC interrupt reset (write		0x45	0x25	TCR1	timer 1 control register	
0x2B	0xB	ADCD	ADC data (read only)		0x46	0x26	TCNT1	timer 1 counter value register	
0x2C	0xC	ADCREQ	ADC sample request (write only)		0x47	0x27	OCR1	timer 1 output compare value register	
		ADCINT	ADC interrupts (read only)		0x48	0x28	TCR2	timer 2 control register	
0x2D	0xD	PORTEI PORTEO	GPIO port E data input/output		0x49	0x29	TCNTL2	timer 2 counter value register, low byte	-
0x2E	0xE	PORTEE	GPIO port E output enable		0x4A	0x2A	TCNTH2	timer 2 counter value register, high byte	-
0x2F	0xF	IOEXPA	IO expander address		0x4B	0x2B	OCRL2	timer 2 output compare value register, low byte	-
0x30	0x10	SRD0	Shadow RAM low byte of data		0x4C	0x2C	OCRH2	timer 2 output compare value register, high byte	
0x31	0x11	SRD1	Shadow RAM high byte of data		0x50	0x30	UCSR	UART status and configuration register	
0x32	0x12	SRA0	Shadow RAM low byte of		0x51	0x31	RXB	UART receive register	
000	0.10	0044	address	-	0x52	0x32	ТХВ	UART transmit register	
0x33	0013	SRAT	address	-	0x53	0x33	INTCONL	interrupt controller low configuration register	
0x34	0x14	SRSC	Shadow RAM status and command		0x54	0x34	INTCONH	interrupt controller high configuration register	
0x35	0x15	PORTAI PORTAO	GPIO port A data input/output		0x55	0x35	TWISC	two wire interface status	
0x36	0x16	PORTBI PORTBO	GPIO port B data input/output		0x56	0x36	TWIADR	two wire interface address	1
0x37	0x17	PORTCI	GPIO port C		0x57	0x37	TWIDAT	two wire interface data	
	0.40	PORICO	data input/output	-	0x58	0x38	SPICTRL	SPI control register	
0x38	UX18	PORTDO	data input/output		0x59	0x39	SPIDAT	SPI data register	
0x39	0x19	PORTAE	GPIO port A		0x5D	0x3D	SPL	stack pointer low byte	
0.01		DODTOS			0x5E	0x3E	SPH	stack pointer high byte	
0x3A	Ux1A	PORTBE	output enable		0x5F	0x3F	SREG	MCU status register	

Table 32: On-Chip bus Register summary

alpha microelectronics gmbh

Fully Integrated Single Motor Controller for Electrical Motors

5.11. MCU Instruction Set

Flag	Description
С	Carry flag
Z	Result is zero
N	Result is negative
V	Two's complement overflow indicator
S	N+V, used for signed tests
н	Half carry flag
Т	Transfer bit used (BLD and BST instructions)
I	Global interrupt Enable flag

Table 33: MCU flags

Operand	Description
Rd	Destination register in register file
Rr	Source register in register file
R	Result after instruction executed
к	Constant data
k	Constant address
b	Bit in register file or IO register
s	bit in status register
X,Y,Z	Indirect address register (X={R27:R26}, Y={R29:R28}, Z={R31:R30})
A	I/O location address
q	displacement for indirect addressing

Table 34: MCU operands

Mnemonic	Operands	Description	Operation			w	N	Binary Opcode
ARITHMETIC	AND LOGIC INS	TRUCTIONS						
ADD	Rd, Rr	Add two registers	Rd ← Rd + Rr	$0 \le d \le 31; 0 \le r \le 31$	Z,C,N,V,H,S	1	1	0000 11rd dddd rrrr
ADC	Rd, Rr	Add with carry two registers	$Rd \gets Rd + Rr + C$	$0 \le d \le 31; 0 \le r \le 31$	Z,C,N,V,H,S	1	1	0001 11rd dddd rrrr
ADIW	Rdl, K	Add immediate to word	$Rdh:Rdl \leftarrow Rdh:Rdl + K$	d = 24, 26, 28, 30; 0 ≤ K ≤ 63	Z,C,N,V,S	1	1	1001 0110 KKdd KKKK
SUB	Rd, Rr	Subtract two registers	Rd ← Rd - Rr	$0 \le d \le 31; 0 \le r \le 31$	Z,C,N,V,H,S	1	1	0001 10rd dddd rrrr
SUBI	Rd, K	Subtract constant from register	$Rd \gets Rd - K$	16 ≤ d ≤ 31; 0 ≤ K ≤ 255	Z,C,N,V,H,S	1	1	0101 KKKK dddd KKKK
SBC	Rd, Rr	Subtract with carry two registers	$Rd \gets Rd - Rr - C$	$0 \le d \le 31; 0 \le r \le 31$	Z,C,N,V,H,S	1	1	0000 10rd dddd rrrr
SBCI	Rd, K	Subtract constant from register with carry	$Rd \gets Rd - K - C$	16 ≤ d ≤ 31; 0 ≤ K ≤ 255	Z,C,N,V,H,S	1	1	0100 KKKK dddd KKKK
SBIW	Rdl, K	Subtract immediate from word	$Rdh:Rdl \leftarrow Rdh:Rdl + K$	d = 24, 26, 28, 30; 0 ≤ K ≤ 63	Z,C,N,V,S	1	1	1001 0111 KKdd KKKK
AND	Rd, Rr	Logical AND registers	Rd ← Rd & Rr	0 ≤ d ≤ 31; 0 ≤ r ≤ 31	Z,N,V,S	1	1	0010 00rd dddd rrrr
ANDI	Rd, K	Logical AND register and constant	$Rd \leftarrow Rd \& K$	16 ≤ d ≤ 31; 0 ≤ K ≤ 255	Z,N,V,S	1	1	0111 KKKK dddd KKKK
OR	Rd, Rr	Logical OR registers	Rd ← Rd Rr	0 ≤ d ≤ 31; 0 ≤ r ≤ 31	Z,N,V,S	1	1	0010 10rd dddd rrrr
ORI	Rd, K	Logical OR register and constant	$Rd \leftarrow Rd \mid K$	16 ≤ d ≤ 31; 0 ≤ K ≤ 255	Z,N,V,S	1	1	0110 KKKK dddd KKKK
EOR	Rd, Rr	Exclusive OR registers	Rd ← Rd ^ Rr	$0 \le d \le 31; 0 \le r \le 31$	Z,N,V,S	1	1	0010 01rd dddd rrrr
СОМ	Rd	One's complement	$Rd \leftarrow 8'hFF - Rd$	0 ≤ d ≤ 31	Z,C,N,V,S	1	1	1001 010d dddd 0000
NEG	Rd	Two's complement	Rd ← 8'h00 - Rd	0 ≤ d ≤ 31	Z,C,N,V,H,S	1	1	1001 010d dddd 0001
SBR	Rd,K	Set Bit(s) in Register	$Rd \leftarrow Rd I K$	16 ≤ d ≤ 31; 0 ≤ K ≤ 255	Z,N,V,S	1	1	0110 KKKK dddd KKKK
CBR	Rd,K	Clear Bit(s) in Register	Rd ← Rd & (8'hFF - K)	16 ≤ d ≤ 31; 0 ≤ K ≤ 255	Z,N,V,S	1	1	0110 !K!K!K!K dddd !K!K!K!K
INC	Rd	Increment	$Rd \leftarrow Rd + 1$	0 ≤ d ≤ 31	Z,N,V,S	1	1	1001 010d dddd 0011
DEC	Rd	Decrement	$Rd \leftarrow Rd - 1$	0 ≤ d ≤ 31	Z,N,V,S	1	1	1001 010d dddd 1010
TST	Rd	Test for zero or minus	Rd ← Rd & Rd	0 ≤ d ≤ 31	Z,N,V,S	1	1	0010 00dd dddd dddd
CLR	Rd	Clear register	Rd ← Rd ^ Rd	0 ≤ d ≤ 31	Z,N,V,S	1	1	0010 01dd dddd dddd
SER	Rd	Set register	Rd ← 8'hFF	16 ≤ d ≤ 31	None	1	1	1110 1111 dddd 1111
MUL	Rd, Rr	Multiply unsigned	R1:R0 ← Rd * Rr	0 ≤ d ≤ 31; 0 ≤ r ≤ 31	Z,C	1	1	1001 11rd dddd rrrr
MULS	Rd, Rr	Multiply signed	R1:R0 ← Rd * Rr	16 ≤ d ≤ 31; 16 ≤ r ≤ 31	Z,C	1	1	0000 0010 dddd rrrr
MULSU	Rd, Rr	Multiply signed with unsigned	R1:R0 ← Rd * Rr	16 ≤ d ≤ 23; 16 ≤ r ≤ 23	Z,C	1	1	0000 0011 0ddd 0rrr
FMUL	Rd, Rr	Fractional multiply unsigned	R1:R0 ← (Rd * Rr) << 1	16 ≤ d ≤ 23; 16 ≤ r ≤ 23	Z,C	1	1	0000 0011 0ddd 1rrr
FMULS	Rd, Rr	Fractional multiply signed	R1:R0 ← (Rd * Rr) << 1	$16 \le d \le 23; 16 \le r \le 23$	Z,C	1	1	0000 0011 1ddd 0rrr

AMG-XB404

Mnemonic	Operands	Description	Operation			w	N	Binary Opcode		
FMULSU	Rd, Rr	Fractional signed by unsigned multiply	R1:R0 ← (Rd * Rr) << 1	16 ≤ d ≤ 23; 16 ≤ r ≤ 23	Z,C	1	1	0000 0011 1ddd 1rrr		
BRANCH INST	BRANCH INSTRUCTIONS									
RJMP	k	Relative jump	$PC \leftarrow PC + k + 1$	-2K ≤ k < 2K	None	1	1	1100 kkkk kkkk kkkk		
IJMP	k	Indirect jump to (Z)	PC ← Z[12:0]		None	1	1	1001 0100 0000 1001		
JMP	k	Direct jump	PC ← k	0 ≤ k < 8K	None	2	2	1001 010k kkkk 110k kkkk kkkk kkkk kkkk		
RCALL	k	Relative subroutine call	$PC \leftarrow PC + k + 1$	-2K ≤ k < 2K	None	1	2	1101 kkkk kkkk kkkk		
ICALL	k	Indirect call to (Z)	PC ← Z[12:0]		None	1	2	1001 0101 0000 1001		
CALL	k	Direct subroutine call	PC ← k	0 ≤ k < 2K	None	2	2	1001 010k kkkk 111k kkkk kkkk kkkk kkkk		
RET		Subroutine return	$PC \leftarrow STACK$		None	1	2	1001 0101 0000 1000		
RETI		Interrupt return	$PC \leftarrow STACK$		None	1	2	1001 0101 0001 1000		
CPSE	Rd, Rr	Compare, skip if equal	If (Rd = Rr) PC ← PC + (2 or 3)	0 ≤ d ≤ 31; 0 ≤ r ≤ 31	None	1	1/2	0001 00rd dddd rrrr		
СР	Rd, Rr	Compare	Rd - Rr	0 ≤ d ≤ 31; 0 ≤ r ≤ 31	Z,C,N,V,H,S	1	1	0001 01rd dddd rrrr		
CPC	Rd, Rr	Compare with carry	Rd - Rr - C	0 ≤ d ≤ 31; 0 ≤ r ≤ 31	Z,C,N,V,H,S	1	1	0000 01rd dddd rrrr		
CPI	Rd, K	Compare register with immediate	Rd - K	16 ≤ d ≤ 31; 0 ≤ K ≤ 255	Z,N,V,C,H,S	1	1	0011 KKKK dddd KKKK		
SBRC	Rr, b	Skip if bit in register cleared	If $(Rr(b) = 0) PC \leftarrow PC + (2 \text{ or } 3)$	$0 \le r \le 31; 0 \le b \le 7$	None	1	1/2	1111 110r rrrr 0bbb		
SBRS	Rr, b	Skip if bit in register is set	If (Rr[b] = 1) PC ← PC + (2 or 3)	$0 \le r \le 31; 0 \le b \le 7$	None	1	1/2	1111 111r rrrr 0bbb		
SBIC	A, b	Skip if bit in I/O register cleared	If (I/O(A,b) = 0) PC ← PC + (2 or 3)	$0 \le A \le 31; 0 \le b \le 7$	None	1	1/2	1001 1001 AAAA Abbb		
SBIS	A, b	Skip if bit in I/O register is set	If (I/O(A,b) = 1) PC ← PC + (2 or 3)	$0 \le A \le 31; 0 \le b \le 7$	None	1	1/2	1001 1011 AAAA Abbb		
BRBS	s, k	Branch if status flag set	If $(SREG[s] = 1) PC \leftarrow PC + k + 1$	0 ≤ s ≤ 7; -64 ≤ k ≤ 63	None	1	1	1111 00kk kkkk ksss		
BRBC	s, k	Branch if status flag cleared	If $(SREG[s] = 0) PC \leftarrow PC + k + 1$	$0 \le s \le 7$; -64 $\le k \le 63$	None	1	1	1111 01kk kkkk ksss		
BREQ	k	Branch if equal	If (Z = 1) PC \leftarrow PC + k + 1	-64 ≤ k ≤ 63	None	1	1	1111 00kk kkkk k001		
BRNE	k	Branch if not equal	If (Z = 0) PC \leftarrow PC + k + 1	-64 ≤ k ≤ 63	None	1	1	1111 01kk kkkk k001		
BRCS	k	Branch if carry set	If (C = 1) PC \leftarrow PC + k + 1	-64 ≤ k ≤ 63	None	1	1	1111 00kk kkkk k000		
BRCC	k	Branch if carry cleared	If (C = 0) PC ← PC + k + 1	-64 ≤ k ≤ 63	None	1	1	1111 01kk kkkk k000		
BRSH	k	Branch if same or higher	If (C = 0) PC ← PC + k + 1	-64 ≤ k ≤ 63	None	1	1	1111 01kk kkkk k000		
BRLO	k	Branch if lower	If (C = 1) PC ← PC + k + 1	-64 ≤ k ≤ 63	None	1	1	1111 00kk kkkk k000		
BRMI	k	Branch if minus	If (N = 1) PC ← PC + k + 1	-64 ≤ k ≤ 63	None	1	1	1111 00kk kkkk k010		
BRPL	k	Branch if plus	If (N = 0) PC ← PC + k + 1	$-64 \le k \le 63$	None	1	1	1111 01kk kkkk k010		

AMG-XB404

Mnemonic	Operands	Description	Operation			w	N	Binary Opcode		
BRGE	k	Branch if greater or equal, signed	If (S = 0) PC ← PC + k + 1	-64 ≤ k ≤ 63	None	1	1	1111 01kk kkkk k100		
BRLT	k	Branch if less than zero, signed	If (S = 1) PC \leftarrow PC + k + 1	-64 ≤ k ≤ 63	None	1	1	1111 00kk kkkk k100		
BRHS	k	Branch if half carry flag set	If (H = 1) PC ← PC + k + 1	-64 ≤ k ≤ 63	None	1	1	1111 00kk kkkk k101		
BRHC	k	Branch if half carry flag cleared	If (H = 0) PC ← PC + k + 1	-64 ≤ k ≤ 63	None	1	1	1111 01kk kkkk k101		
BRTS	k	Branch if T flag set	If (T = 1) PC \leftarrow PC + k + 1	-64 ≤ k ≤ 63	None	1	1	1111 00kk kkkk k110		
BRTC	k	Branch if T flag cleared	If (T = 0) PC \leftarrow PC + k + 1	-64 ≤ k ≤ 63	None	1	1	1111 01kk kkkk k110		
BRVS	k	Branch if overflow flag set	If (V = 1) PC ← PC + k + 1	-64 ≤ k ≤ 63	None	1	1	1111 00kk kkkk k011		
BRVC	k	Branch if overflow flag cleared	If (V = 0) PC ← PC + k + 1	-64 ≤ k ≤ 63	None	1	1	1111 01kk kkkk k011		
BRIE	k	Branch if interrupt enabled	If (I = 1) PC ← PC + k + 1	-64 ≤ k ≤ 63	None	1	1	1111 00kk kkkk k111		
BRID	k	Branch if interrupt disabled	If (I = 0) PC ← PC + k + 1	-64 ≤ k ≤ 63	None	1	1	1111 01kk kkkk k111		
DATA TRANSF	DATA TRANSFER INSTRUCTIONS									
MOV	Rd, Rr	Move between registers	Rd ← Rr	0 ≤ d ≤ 31; 0 ≤ r ≤ 31	None	1	1	0010 11rd dddd rrrr		
MOVW	Rd, Rr	Copy register word	Rd+1:Rd ← Rr+1:Rr	d = 0, 230; r = 0, 230	None	1	1	0000 0001 dddd rrrr		
LDI	Rd, K	Load immediate	$Rd \leftarrow K$	16 ≤ d ≤ 31; 0 ≤ K ≤ 255	None	1	1	1110 KKKK dddd KKKK		
LD	Rd, X	Load indirect	$Rd \leftarrow (X)$	0 ≤ d ≤ 31	None	1	1	1001 000d dddd 1100		
LD	Rd, X+	Load indirect and post-increment	$Rd \leftarrow (X), X \leftarrow X + 1$	0 ≤ d ≤ 31	None	1	1	1001 000d dddd 1101		
LD	Rd, -X	Load indirect and pre-decrement	$X \leftarrow X - 1, Rd \leftarrow (X)$	0 ≤ d ≤ 31	None	1	1	1001 000d dddd 1110		
LD	Rd, Y	Load indirect	$Rd \leftarrow (Y)$	0 ≤ d ≤ 31	None	1	1	1000 000d dddd 1000		
LD	Rd, Y+	Load indirect and post-increment	$Rd \leftarrow (Y), Y \leftarrow Y + 1$	0 ≤ d ≤ 31	None	1	1	1001 000d dddd 1001		
LD	Rd, -Y	Load indirect and pre-decrement	$Y \leftarrow Y - 1, Rd \leftarrow (Y)$	0 ≤ d ≤ 31	None	1	1	1001 000d dddd 1010		
LDD	Rd, Y+q	Load indirect with displacement	$Rd \leftarrow (Y + q)$	$0 \le d \le 31$ $0 \le q \le 63$	None	1	1	10q0 qq0d dddd 1qqq		
LD	Rd, Z	Load indirect	$Rd \leftarrow (Z)$	0 ≤ d ≤ 31	None	1	1	1000 000d dddd 0000		
LD	Rd, Z+	Load indirect and post-increment	$Rd \leftarrow (Z), Z \leftarrow Z + 1$	0 ≤ d ≤ 31	None	1	1	1001 000d dddd 0001		
LD	Rd, -Z	Load indirect and pre-decrement	$Z \leftarrow Z - 1, Rd \leftarrow (Z)$	0 ≤ d ≤ 31	None	1	1	1001 000d dddd 0010		
LDD	Rd, Z+q	Load indirect with displacement	$Rd \leftarrow (Z + q)$	0 ≤ d ≤ 31 0 ≤ q ≤ 63	None	1	1	10q0 qq0d dddd 0qqq		
LDS	Rd, k	Load direct from SRAM	$Rd \leftarrow (k)$	0 ≤ d ≤ 31 0 ≤ k ≤ 607	None	2	2	1001 000d dddd 0000 kkkk kkkk kkkk kkkk		
ST	X, Rr	Store indirect	$(X) \leftarrow Rr$	0 ≤ r ≤ 31	None	1	1	1001 001r rrrr 1100		

Mnemonic	Operands	Description	Operation		Flags	w	N	Binary Opcode
ST	X+, Rr	Store indirect and post-increment	$(X) \leftarrow Rr, X \leftarrow X + 1$	0 ≤ r ≤ 31	None	1	1	1001 001r rrrr 1101
ST	-X, Rr	Store indirect and pre-decrement	$X \leftarrow X - 1, (X) \leftarrow Rr$	0 ≤ r ≤ 31	None	1	1	1001 001r rrrr 1110
ST	Y, Rr	Store indirect	$(Y) \leftarrow Rr$	0 ≤ r ≤ 31	None	1	1	1000 001r rrrr 1000
ST	Y+, Rr	Store indirect and post-increment	$(Y) \leftarrow Rr, Y \leftarrow Y + 1$	0 ≤ r ≤ 31	None	1	1	1001 001r rrrr 1001
ST	-Y, Rr	Store indirect and pre-decrement	$Y \leftarrow Y - 1, (Y) \leftarrow Rr$	0 ≤ r ≤ 31	None	1	1	1001 001r rrrr 1010
STD	Y+q, Rr	Store Indirect with displacement	(Y + d) ← Rr	0 ≤ r ≤ 31 0 ≤ q ≤ 63	None	1	1	10q0 qq1r rrrr 1qqq
ST	Z, Rr	Store Indirect	$(Z) \leftarrow Rr$	0 ≤ r ≤ 31	None	1	1	1000 001r rrrr 0000
ST	Z+, Rr	Store indirect and post-increment	$(Z) \leftarrow Rr, Z \leftarrow Z + 1$	0 ≤ r ≤ 31	None	1	1	1001 001r rrrr 0001
ST	-Z, Rr	Store indirect and pre-decrement	$Z \leftarrow Z - 1, (Z) \leftarrow Rr$	0 ≤ r ≤ 31	None	1	1	1001 001r rrrr 0010
STD	Z+q, Rr	Store indirect with displacement	(Z + d) ← Rr	$0 \le r \le 31$ $0 \le q \le 63$	None	1	1	10q0 qq1r rrrr 0qqq
STS	K,Rr	Store direct to data space	(k) ← Rr	0 ≤ d ≤ 31 0 ≤ k ≤ 607	None	2	2	1001 001d dddd 0000 kkkk kkkk kkkk kkkk
LPM		Load program memory	R0 ← (Z)		None	1	2	1001 0101 1100 1000
LPM	Rd, Z	Load program memory	$Rd \leftarrow (Z)$	0 ≤ d ≤ 31	None	1	2	1001 000d dddd 0100
LPM	Rd, Z+	Load program memory and post-increment	$Rd \leftarrow (Z)$	0 ≤ d ≤ 31	None	1	2	1001 000d dddd 0101
IN	Rd, A	IO port in	$Rd \leftarrow I/O(A)$	$0 \le d \le 31$ $0 \le A \le 63$	None	1	1	1011 0AAd dddd AAAA
OUT	A, Rr	IO port out	I/O(A) ← Rr	$0 \le d \le 31$ $0 \le A \le 63$	None	1	1	1011 1AAr mrr AAAA
PUSH	Rr	Push register on stack	$STACK \leftarrow Rr$	0 ≤ r ≤ 31	None	1	1	1001 001d dddd 1111
POP	Rd	Pop register from stack	$Rd \leftarrow STACK$	0 ≤ d ≤ 31	None	1	1	1001 000d dddd 1111
BIT AND BIT-T	EST INSTRUCT	TONS						
SBI	A, b	Set bit in I/O register	I/O(A,b) ← 1	$0 \le A \le 31$ $0 \le b \le 7$	None	1	1	1001 1010 AAAA Abbb
СВІ	A, b	Clear bit in I/O register	I/O(A,b) ← 0	$0 \le A \le 31$ $0 \le b \le 7$	None	1	1	1001 1000 AAAA Abbb
LSL	Rd	Logical shift left	$Rd[n+1] \leftarrow Rd[n], C \leftarrow Rd[7], Rd[0] \leftarrow 0$	0 ≤ d ≤ 31	Z,C,N,V,H,S	1	1	0000 11dd dddd dddd
LSR	Rd	Logical shift right	$Rd[n] \leftarrow Rd[n+1], C \leftarrow Rd[0], Rd[7] \leftarrow 0$	0 ≤ d ≤ 31	Z,C,N,V,S	1	1	1001 010d dddd 0110
ROL	Rd	Rotate left through carry	$Rd[0] \leftarrow C, Rd(n+1) \leftarrow Rd[n], C \leftarrow Rd[7]$	0 ≤ d ≤ 31	Z,C,N,V,H,S	1	1	0001 11dd dddd dddd
ROR	Rd	Rotate right through carry	$Rd[7] \leftarrow C, Rd[n] \leftarrow Rd[n+1], C \leftarrow Rd[0]$	0 ≤ d ≤ 31	Z,C,N,V,S	1	1	1001 010d dddd 0111

AMG-XB404

Mnemonic	Operands	Description	Operation		Flags	w	N	Binary Opcode
ASR	Rd	Arithmetic shift right	$C \leftarrow Rd[0], Rd[n] \leftarrow Rd[n+1], Rd[7] \leftarrow Rd[7]$	0 ≤ d ≤ 31	Z,C,N,V,S	1	1	1001 010d dddd 0101
SWAP	Rd	Swap nibbles	$Rd[3:0] \leftarrow Rd[7:4], Rd[7:4] \leftarrow Rd[3:0]$	0 ≤ d ≤ 31	None	1	1	1001 010d dddd 0010
BSET	s	Flag set	SREG[s] ← 1	0 ≤ s ≤ 7	SREG[s]	1	1	1001 0100 0sss 1000
BCLR	s	Flag clear	SREG[s] ← 0	0 ≤ s ≤ 7	SREG[s]	1	1	1001 0100 1sss 1000
BST	Rr, b	Store bit from register to T	T ← Rr[b]	$0 \le r \le 31$ $0 \le b \le 7$	Т	1	1	1111 101d dddd 0bbb
BLD	Rd, b	Load bit from T to register	Rd[b] ← T	$0 \le r \le 31$ $0 \le b \le 7$	None	1	1	1111 100d dddd 0bbb
SEC		Set carry	C ← 1		С	1	1	1001 0100 0000 1000
CLC		Clear carry	C ← 0		С	1	1	1001 0100 1000 1000
SEN		Set negative flag	N ← 1		Ν	1	1	1001 0100 0010 1000
CLN		Clear negative flag	N ← 0		N	1	1	1001 0100 1010 1000
SEZ		Set zero flag	Z ← 1		Z	1	1	1001 0100 0001 1000
CLZ		Clear zero flag	Z ← 0		Z	1	1	1001 0100 1001 1000
SEI		Global interrupt enable	N ← 1		I	1	1	1001 0100 0111 1000
CLI		Global interrupt disable	N ← 0		I	1	1	1001 0100 1111 1000
SES		Set signed test flag	S ← 1		S	1	1	1001 0100 0100 1000
CLS		Clear signed test flag	S ← 0		S	1	1	1001 0100 1100 1000
SEV		Set twos complement overflow	V ← 1		V	1	1	1001 0100 0011 1000
CLV		Clear twos complement overflow	V ← 0		V	1	1	1001 0100 1011 1000
SET		Set T in SREG	T ← 1		Т	1	1	1001 0100 0110 1000
CLT		Clear T in SREG	T ← 0		Т	1	1	1001 0100 1110 1000
SEH		Set half carry flag in SREG	H ← 1		Н	1	1	1001 0100 0101 1000
CLH		Clear half carry flag in SREG	H ← 0		Н	1	1	1001 0100 1101 1000
MCU CONTRO	L INSTRUCTIO	NS						
NOP		No operation			None	1	1	0000 0000 0000 0000
SLEEP		Sleep			None	1	1	1001 0101 1000 1000
WDR		Watchdog reset			None	1	1	1001 0101 1010 1000

Table 35: MCU instruction set, W denotes number of program words, N denotes number of clock cycles

alpha microelectronics gmbh

Fully Integrated Single Motor Controller for Electrical Motors

6. Pinning

Pin #	Symbol	Description	Pin #	Symbol	Description
1	PC6/ SPI_DI	MCU PORTC pin 6 GPIO	33	M0R3	M0 phase return input 3
2	PC7/ SPI_CLK	MCU PORTC pin 7 GPIO	34	ХО	Crystal Oscillator input
3	CLKIO	Clock input/output	35	XO_OSEL	Crystal Oscillator input / Osc select
4	DGND1	Digital GND	36	NPOR	Power On Reset Monitor (output)
5	DGND2	Digital GND	37	PFC_PWM	PFC PWM output
6	NRESIN	Reset input	38	M0OFI	M0 over current input
7	NRESOUT	Reset output	39	M0O1	M0 gate driver output 1
8	CLKSEL	Clock select	40	M0O2	M0 gate driver output 2
9	SWV	SMPS voltage sense input	41	M0O3	M0 gate driver output 3
10	SWVFB	SMPS voltage sense feedback	42	M0O4	M0 gate driver output 4
11	SWDRV	SMPS gate driver output	43	M0O5	M0 gate driver output 5
12	SWI	SMPS current sense input	44	M0O6	M0 gate driver output 6
13	SWVDD	SMPS supply voltage input	45	DVDD1	2.5V digital supply voltage
14	SWVREF	SMPS reference voltage	46	D5V1	Digital 5V input
15	DGND3	Digital GND	47	PB0/ UART_TX	MCU PORTB pin 0 GPIO
16	ADC0	ADC input channel MCU PORTE pin 0 GPIO	48	PB1/ UART_RX	MCU PORTB pin 1 GPIO
17	ADC1	ADC input channel MCU PORTE pin 1 GPIO	49	PB2/ IIC_SCLK	MCU PORTB pin 2 GPIO
18	ADC2	ADC input channel MCU PORTE pin 2 GPIO	50	PB3/ IIC_SDA	MCU PORTB pin 3 GPIO
19	DVDD2	2.5V digital supply voltage	51	PB4/ T0_OUT	MCU PORTB pin 4 GPIO
20	D5V2	Digital 5V input	52	PB5/ T1_OUT	MCU PORTB pin 5 GPIO
21	VDC	PFC DC bus voltage input	53	PB6/ T2_OUT	MCU PORTB pin 6 GPIO
22	VAC	PFC rectified AC voltage input	54	PB7	MCU PORTB pin 7 GPIO
23	VREF	ADC reference voltage	55	SDI	SPI unit serial data input
24	AGND	Analog GND	56	SDO	SPI unit serial data output
25	AVDD	2.5V analog voltage output	57	SCS	SPI unit chip select input
26	A5V	Analog 5V input	58	SCLK	SPI unit clock input

alpha microelectronics

Fully Integrated Single Motor Controller for Electrical Motors

Pin #	Symbol	Description	Pin #	Symbol	Description
27	PFCI	PFC AC current sense input	59	DVDD3	2.5V digital supply voltage
28	PFCIFB	PFC AC current sense feedback	60	D5V3	Digital 5V input
29	MOI	M0 current sense input	61	PC2/T2_IN	MCU PORTC pin 2 GPIO
30	MOIFB	M0 current sense feedback	62	PC3	MCU PORTC pin 3 GPIO
31	M0R1	M0 phase return input 1	63	PC4/SPI_ CS	MCU PORTC pin 4 GPIO
32	M0R2	M0 phase return input 2	64	PC5/SPI_ DO	MCU PORTC pin 5 GPIO

Table 36: AMG-XB404 Pin List

7. Absolute Maximum Ratings

The Absolute Maximum Ratings may not be exceeded under any circumstances.

#	Symbol	Parameter	Min	Мах	Unit
1	V _{IN}	Voltage on any analog or digital signal pin	-0.3	V _{VDD} +0.3V	V
2	V _{SWDRV}	Voltage on switching supply driver output SWDRV	-0.3	V _{SWVDD} +0.3	V
3	V _{SWVDD}	Voltage on switching supply pin SWVDD	-0.3	6	V
4	V _{D5V}	Voltage on digital supply pin D5Vx	V _{SWVDD} - 0.3	V _{SWVDD} + 0.3	V
5	V _{A5V}	Voltage on analog supply pin A5V	-0.3	6	
6	VAGND	Voltage on analog ground pin AGND	-0.3	0.5	V
7	V _{VD}	Voltage on digital supply pin DVDDx	-0.3	2.75	V
8	V _{VREF}	Voltage on analog reference voltage pin VREF	-0.3	2.75	V
9	I _{OUT}	Logic output current	-20	20	mA
10	V _{ESD}	ESD protection voltage (all pins)	-1	1	kV
11	T _{STB}	Storage temperature before programming	-40	125	°C
12	T _{STA}	Storage temperature after programming	-40	85	°C
13	TJ	Junction temperature		125	°C

Table 37: AMG-XB404 Absolute Maximum Ratings

8. Electrical Characteristics

Unless otherwise specified, the minimum and maximum characteristics contain the spread of values guaranteed within the specified operating conditions.

Unless otherwise specified, typical values are given with D5V = A5A = 5V, $T_A = 25^{\circ}C$

8.1. Operational Range

#	Symbol	Parameter	Min	Тур	Max	Unit
1	VSWVDD	Voltage on switching supply pin SWVDD	4.3		5.5	V
2	V _{D5V}	Voltage on general supply pin D5V	4.5	5.0	5.5	V
3	VAGND	Voltage on analog ground pin AGND	-0.1	0	0.1	V
4	V _{INH}	Logic HIGH signal input voltage [V _{D5V} =5V]	1.7		5.3	V
5	VINL	Logic LOW signal input voltage [V _{D5V} =5V]	0		0.8	V
6	T _A	Ambient operating temperature	-25	25	85 ³	°C
7	RTH	Package thermal resistance			40	K/W

Table 38: AMG-XB404 Operational Range

8.2. DC Characteristics

#	Symbol	Parameter	Min	Тур	Мах	Unit
1	V _{VREF}	Voltage on analog reference pin VREF	1.62	1.8	1.98	V
2	V _{VCC}	Voltage on analog supply pin AVDD	2.25	2.5	2.75	V
3	V _{VD}	Voltage on logic core supply pin DVDDx	2.25	2.5	2.75	V
4	V _{SWVREF}	Voltage on switching supply reference pin SWVREF		1.29		V
5	V _{VSWDRV}	HIGH voltage on switching supply driver pin SWDRV [I _{VSWDRV} =20mA]	3.5		V _{SWVDD}	V
6	V _{POR}	Power-on reset voltage	3.8	4.1	4.4	V
7	V _{BO}	Brown-out voltage	3.3	3.6	3.9	V
8	NTEMP	Temperature channel resolution		0.625		K/bit
9	N _{VDD}	Voltage channel resolution		8		mV/bit

Table 39: AMG-XB404 DC Characteristics

³ The junction temperature is given as a chip temperature which depends on the IC's total power dissipation. The junction temperature can be calculated as $T_J = T_A + R_{TH} \cdot P_{tot}$, where P_{tot} denotes the total power dissipation.

alpha microelectronics gmbh

Fully Integrated Single Motor Controller for Electrical Motors

8.3. AC Characteristics

#	Symbol	Parameter	Min	Тур	Max	Unit
1	f _{clкi}	Internal RC-oscillator frequency	175	350	500	kHz
2	d _f	Internal RC-oscillator frequency deviation	-2		+2	%
3	f _{IN}	Initial FLL frequency	22.5	45	64	MHz
4	T _{POR}	Power-on reset delay time [after D5V 0V→5V step]		5		ms
5	Т _{LOCK}	FLL reset delay time		10		ms
6	f _{sw}	Switching supply frequency (RC oscillator) [Start up, before setting divider]	10	22	35	kHz
7	f _{SCL}	EEPROM Clock Frequency, SCL			1000	kHz
8	t _{LOW}	EEPROM Clock Pulse Width Low	0.4			μs
9	t _{HIGH}	EEPROM Clock Pulse Width High	0.4			μs
10	t _{AA}	EEPROM Clock Low to Data Out Valid	0.05		0.55	μs
11	t _{HD.STA}	EEPROM Start Hold Time	0.25			μs
12	t _{su.sta}	EEPROM Start Setup Time	0.25			μs
13	t _{HD.DAT}	EEPROM Data In Hold Time	0			μs
14	t _{su.dat}	EEPROM Data In Setup Time	0.1			μs
15	t _R	EEPROM Inputs Rise Time			0.3	μs
16	t⊧	EEPROM Inputs Fall Time			0.1	μs
17	t _{su.sto}	EEPROM Stop Setup Time	0.25			μs
18	t _{DH}	EEPROM Data Out Hold Time	50			ns
19	t _{WR}	EEPROM Write Cycle Time			5	ms

Table 40: AMG-XB404 AC Characteristics

8.4. ADC Characteristics

Symbol	Parameter	Min	Тур	Max	Unit
NA	Resolution	-	10	-	bit
f _{ADC}	Conversion rate	-	2	-	MSmp/s
INL ⁴	Integral non-linearity		0.5		% FSR⁵
O _{ffset}	Offset		1		LSB
-	N _A f _{ADC} INL ⁴ O _{ffset}	Symbol Parameter N _A Resolution f _{ADC} Conversion rate INL ⁴ Integral non-linearity O _{ffset} Offset	Symbol Parameter Win N _A Resolution - f _{ADC} Conversion rate - INL ⁴ Integral non-linearity - O _{ffset} Offset -	SymbolParameterWinTyp N_A Resolution-10 f_{ADC} Conversion rate-2 INL^4 Integral non-linearity0.5 O_{ffset} Offset1	SymbolParameterMinTypMax N_A Resolution-10- f_{ADC} Conversion rate-2- INL^4 Integral non-linearity0.50.5 O_{ffset} Offset1-

Table 41: AMG-XB404 ADC Characteristics

4 absolute linearity is guaranteed by design

5 full scale range

alpha microelectronics gmbh

Fully Integrated Single Motor Controller for Electrical Motors

8.5. Supply Current Characteristics

#	Symbol	Parameter	Min	Тур	Max	Unit
1	I_{D5V_SLEEP}	Idle mode digital supply current [f _{FLL} =64MHz, all units off]		40		mA
2	I _{D5V_OP}	Operating mode digital supply current [f _{FLL} =64MHz, all units on]		60	90	mA
3	I _{A5V_SLEEP}	Quiescent analog supply current [f _{FLL} =64MHz, bias off]		1.2		mA
4	I _{A5V_OP}	Operating analog supply current [f _{FLL} =64MHz, all amplifiers enabled]		7.7	12	mA
5		Switching controller quiescent supply current $[V_{SWVDD}=3.5V]$		130		μA
	ISWVDDo	Switching controller operating supply current $[V_{SWVDD}=5V]$		0.7	1.2	mA

Table 42: AMG-XB404 Supply Current Characteristics

8.6. Logic-Level Characteristics

#	Symbol	Parameter	Min	Тур	Max	Unit
1	I _{IN,H}	Logic HIGH signal input current	-0.1		0.1	μA
2	-I _{IN,L}	Logic LOW signal input current	-0.1		0.1	μA
3	V _{оит,н}	Logic HIGH signal output voltage [I _{out} =-15mA, V _{D5V} =5V]	4	4.7		V
4	Vout,l	Logic LOW signal output voltage [I _{out} =15 mA, V _{D5v} =5V]		0.2	0.8	V

Table 43: AMG-XB404 Logic-level Characteristics

9. IC-Package

D Package: LQFP68 – Body size: 10mm x 10mm x 1.4mm, RoHS compliant

 \Box Termal resistance: R_{TH} = 40 K/W

Notes:

- 1. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25 [.010] per side. D1 and E1 are maximum plastic body size dimensions including mold mismatch
- 2. The top package body size may be smaller than the bottom body size by as much as 0.15 [.006]
- 3. Drawing conforms to JEDEC MS-026 Rev. D
- 4. Controlling dimensions in mm

Symbol	Min	Тур	Max
D	11.8	12.0	12.2
	.464	.472	.480
D1	9.9	10.0	10.1
	.390	.394	.398
E	11.8	12.0	12.2
	.464	.472	.480
E1	9.9	10.0	10.1
	.390	.394	.398
b	0.17	0.22	0.27
	.007	.009	.011
b1	0.17	0.20	0.23
	.007	.008	.009
с	0.09		0.20
	.004		.008
c1	0.09		0.16
	.004		.006
е		0.50	
		.020	
ссс		0.08	
		.003	
ddd		0.08	
		.003	
N		64	

Table 44: LQFP64 package dimensions

10. IC-Marking

11. Packing Specification

IC in tray (ESD bag, vacuum sealed, max. 10 trays per bag)
 160 ICs per tray

12. Notes and Cautions

12.1. ESD Protection

The Requirements for Handling Electrostatic Discharge Sensitive Devices are described in the JEDEC standard JESD625-A. Please note the following recommendations:

- When handling the device, operators must be grounded by wearing a for the purpose designed grounded wrist strap with at least 1MΩ resistance and direct skin contact.
- Operators must at all times wear ESD protective shoes or the area should be surrounded by for ESD protection intended floor mats.
- Opening of the protective ESD package that the device is delivered in must only occur at a properly equipped ESD workbench. The tape with which the package is held together must be cut with a sharp cutting tool, never pulled or ripped off.
- □ Any unnecessary contact with the device or any unprotected conductive points should be avoided.
- U Work only with qualified and grounded tools, measuring equipment, casing and workbenches.
- Outside properly protected ESD-areas the device or any electronic assembly that it may be part of should always be transported in EGB/ESD shielded packaging.

12.2. Storage Conditions

The AMG-XB404 corresponds to moisture sensitivity classification MSL2, according to JEDEC standard J-STD-020, and should be handled and stored according to J-STD-033.

13. Disclaimer

Information given in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed for the consequences of its use nor for any infringement of patents or other rights of third parties that may result from its use. alpha microelectronics gmbh does not authorize or warrant any of its products for use in life support system equipment.

The values stated in Absolute Maximum Ratings may under no circumstances be exceeded. No warranty is given for use in life support systems or medical equipment without the specific written consent of alpha microelectronics gmbh. For questions regarding the application please contact the publisher.

The declared data are only a description of the product. They are not guaranteed properties as defined by law. Examples are given without obligations and cannot give rise to any liability. Reprinting of this data sheet – or any part of it – is not allowed without the license of the publisher. Data sheets are subject to change without any notice.

Fully Integrated Single Motor Controller for Electrical Motors

14. Contact Information

This data sheet is published by alpha microelectronics gmbh. To order samples or inquire information please contact:

alpha microelectronics gmbh Im Technologiepark 1 15236 Frankfurt (Oder) Germany

am.info@alpha-microelectronics.de www.alpha-microelectronics.de

+49-335-557-1750 (telephone) +49-335-557-1759 (fax)

© All rights reserved.

