

SLD202U-3/V-3

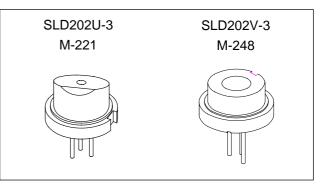
50mW High Power Laser Diode

Description

SLD202U-3/V-3 is a gain-guided high-power laser diode fabricated by MOCVD.

Features

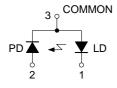
High power laser diode with the excellent general purpose

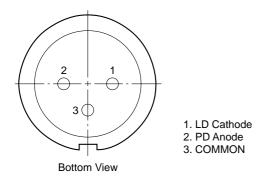

Application

Communications, Optical disc

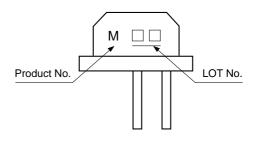
Structure

AlGaAs double-hetero laser diode, PIN photo diode included for monitoring the laser radiant power output


Recommended Radiant Power Output 40mW


Absolute Maximum Ratings (Tc = 25°C)

 Optical power output 	Ро		50 r	nW
 Reverse voltage 	Vr	LD	2	V
		PD	30	V
 Operating temperature 	Topr		-10 to +50	°C
 Storage temperature 	Tstg		-40 to +85	°C

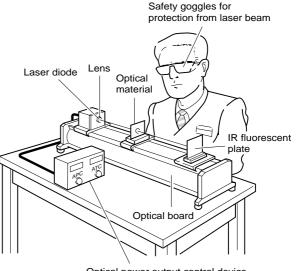

Connection Diagram

Pin Configuration

Marking

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

 $(Tc = 25^{\circ}C)$

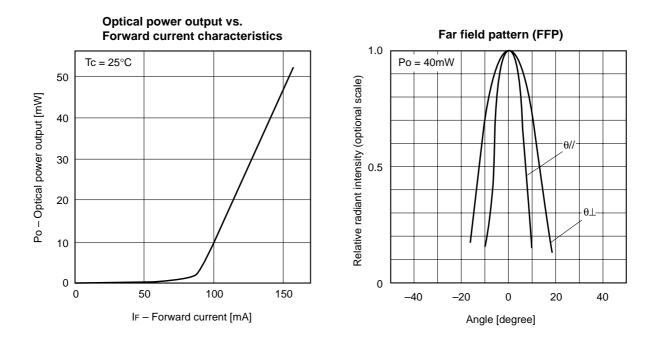

			- ···		_		
	Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Threshold c	urrent	lth			80	110	mA
Operating c	urrent	Іор	Po = 40mW		120	160	mA
Operating v	oltage	Vop	Po = 40mW		2.1	2.5	V
Wavelength		λ	Po = 40mW	800	820	840	nm
Monitor curr	ent	Im	Po = 40mW VR = 15V	0.05	0.24	1.2	mA
Radiation	Perpendicular	θ⊥	Po = 40mW		28	38	degree
angle	Parallel	θ//		7	14	21	degree
	Position	$\Delta X, \Delta Y, \Delta Z$	Po = 40mW			±50	μm
Positional accuracy	Angle	$\Delta \phi \bot$				±3	dograa
	Angle	Δφ//					degree
Differential e	efficiency	ηD	Po = 40mW	0.3	1.0		mW/mA
Dark curren	t of PD	lo	VR = 15V			0.15	μA

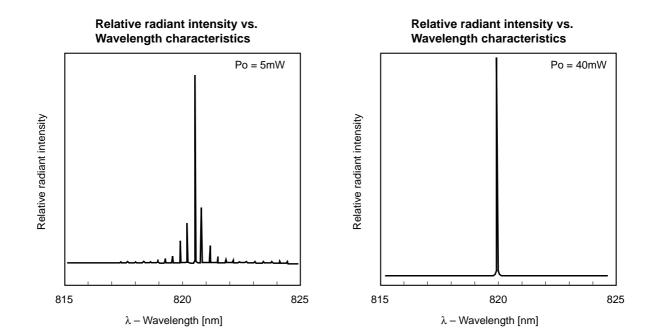
Electrical and Optical Characteristics

Handling Precautions

(1) Eye protection against laser beams

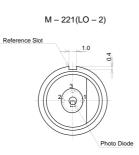
The optical output of laser diodes ranges from several mW to 4W. However the optical power density of the laser beam at the diode chip reaches 1MW/cm². Unlike gas lasers, since laser diode beams are divergent, uncollimated laser diode beams are fairly safe at a laser diode. For observing laser beams, ALWAYS use safety goggles that block infrared rays. Usage of IR scopes, IR cameras and fluorescent plates is also recommended for monitoring laser beams safely.

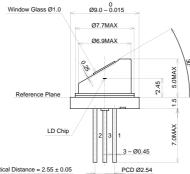



Optical power output control device Temperature control device

(2) Prevention of surge current and electrostatic discharge

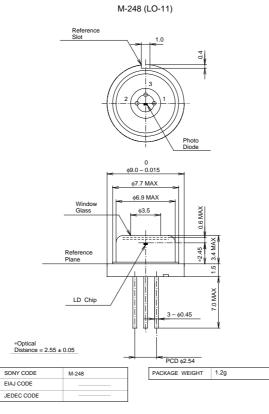
Laser diode is most sensitive to electrostatic discharge among semiconductors. When a large current is passed through the laser diode even for an extremely short time (in the order of nanosecond), the strong light emitted from the laser diode promotes deterioration and then laser diodes are destroyed. Therefore, note that the surge current should not flow the laser diode driving circuit from switches and others. Also, if the laser diode is handled carelessly, it may be destructed instantly because electrostatic discharge is easily applied by a human body. Be great careful about excess current and electrostatic discharge.


Example of Representative Characteristics



Package Outline Unit: mm

SLD202U-3



*Optical Distance = 2.55 ± 0.05

SONY CODE	M-221(LO-2)	PACKAGE STRUCTURE			
EIAJ CODE					
JEDEC CODE		PACKAGE WEIGHT 1.2g			

SLD202V-3

Sony Corporation