

April 1994 Revised May 2003

74VHC273 Octal D-Type Flip-Flop

General Description

The VHC273 is an advanced high speed CMOS Octal D-type flip-flop fabricated with silicon gate CMOS technology. It achieves the high speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation.

The register has a common buffered Clock (CP) which is fully edge-triggered. The state of each D input, one setup time before the LOW-to-HIGH clock transition, is transferred to the corresponding flip-flop's Q output. The Master Reset (\overline{MR}) input will clear all flip-flops simultaneously. All outputs will be forced LOW independently of Clock or Data inputs by a LOW voltage level on the \overline{MR} input.

An input protection circuit insures that 0V to 7V can be applied to the inputs pins without regard to the supply voltage. This device can be used to interface 5V to 3V systems and two supply systems such as battery backup. This circuit prevents device destruction due to mismatched supply and input voltages.

Features

- \blacksquare High Speed: $f_{MAX} = 165$ MHz (typ) at $V_{CC} = 5V$
- \blacksquare Low power dissipation: I_{CC} = 4 μA (max) at T_A = 25°C
- High noise immunity: $V_{NIH} = V_{NIL} = 28\% V_{CC}$ (min)
- Power down protection is provided on all inputs
- Low noise: V_{OLP} = 0.9V (max)
- Pin and function compatible with 74HC273
- Leadless DQFN Package

Ordering Code:

Order Number	Package Number	Package Description
74VHC273M	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74VHC273SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74VHC273BQ (Preliminary)	MLP020B (Preliminary)	20-Terminal Depopulated Quad Very-Thin Flat Pack No Leads (DQFN), JEDEC MO-241, 2.5 x 4.5mm
74VHC273MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74VHC273N	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

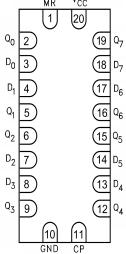
Surface mount packages are also available on Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbols

Connection Diagrams

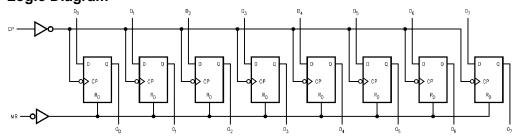
Pin Assignments for PDIP, SOIC, SOP, and TSSOP

Pad Assignments for DQFN


Pin Descriptions

Pin Names	Description
D ₀ -D ₇	Data Inputs
MR	Master Reset
CP	Clock Pulse Input
Q ₀ –Q ₇	Data Outputs

Function Table


		Outputs		
Operating Mode	MR	СР	D _n	Q _n
Reset (Clear)	L	Х	Х	L
Load '1'	Н	~	Н	Н
Load '0'	Н		L	L

- H = HIGH Voltage Level
- L = LOW Voltage Level X = Immaterial
- ∠ = LOW-to-HIGH Transition

(Top Through View)

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 1)

 $\begin{array}{lll} \text{Supply Voltage (V}_{\text{CC}}) & -0.5 \text{V to } +7.0 \text{V} \\ \text{DC Input Voltage (V}_{\text{IN}}) & -0.5 \text{V to } +7.0 \text{V} \\ \text{DC Output Voltage (V}_{\text{OUT}}) & -0.5 \text{V to V}_{\text{CC}} +0.5 \text{V} \\ \end{array}$

Storage Temperature (T_{STG}) -65°C to +150°C

Lead Temperature (T_L)

(Soldering, 10 seconds) 260°C

Recommended Operating Conditions (Note 2)

Input Rise and Fall Time (t_r, t_f)

$$\begin{split} \text{V}_{\text{CC}} = 3.3 \text{V} \pm 0.3 \text{V} & \text{0 ns/V} \sim 100 \text{ ns/V} \\ \text{V}_{\text{CC}} = 5.0 \text{V} \pm 0.5 \text{V} & \text{0 ns/V} \sim 20 \text{ ns/V} \end{split}$$

Note 1: Absolute Maximum Ratings are values beyond which the device may be damaged or have its useful life impaired. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside databook specifications.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	v _{cc}	T _A = 25°C			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions	
Symbol		(V)	Min	Тур	Max	Min	Max	Ullits	Conditions	
V _{IH}	HIGH Level Input	2.0	1.50			1.50		V		
	Voltage	3.0 - 5.5	0.7 V _{CC}			0.7 V _{CC}		٧		
V _{IL}	LOW Level Input	2.0			0.50		0.50	V		
	Voltage	3.0 - 5.5			$0.3 V_{\rm CC}$		$0.3~\mathrm{V}_{\mathrm{CC}}$	v		
V _{OH}	HIGH Level Output	2.0	1.9	2.0		1.9			$V_{IN} = V_{IH}$	$I_{OH} = -50 \mu A$
	Voltage	3.0	2.9	3.0		2.9		V	or V _{IL}	
		4.5	4.4	4.5		4.4				
		3.0	2.58			2.48		V		$I_{OH} = -4 \text{ mA}$
		4.5	3.94			3.80		٧		$I_{OH} = -8 \text{ mA}$
V _{OL}	LOW Level Output	2.0		0.0	0.1		0.1		$V_{IN} = V_{IH}$	$I_{OL} = 50 \mu A$
	Voltage	3.0		0.0	0.1		0.1	V	or V _{IL}	
		4.5		0.0	0.1		0.1			
		3.0			0.36		0.44	V		I _{OL} = 4 mA
		4.5			0.36		0.44	v		$I_{OL} = 8 \text{ mA}$
I _{IN}	Input Leakage Current	0 – 5.5			±0.1		±1.0	μΑ	$V_{IN} = 5.5V o$	r GND
I _{CC}	Quiescent Supply Current	5.5			4.0		40.0	μΑ	$V_{IN} = V_{CC}$ or	GND

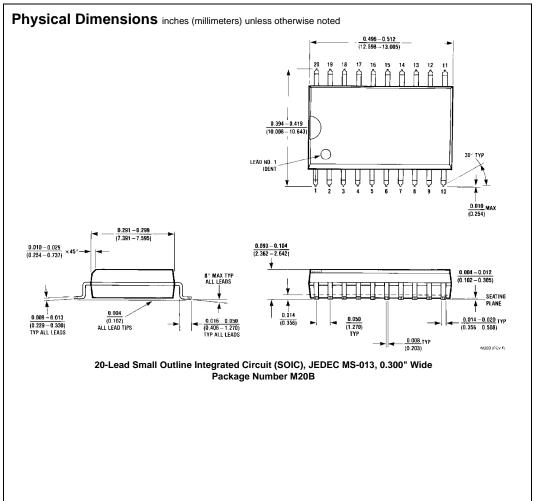
Noise Characteristics

Symbol	Parameter	V _{CC}	T _A =	= 25°C	Units	Conditions	
Cynnbon	T didiletei	(V)	Тур	Limits	Oille		
V _{OLP} (Note 3)	Quiet Output Maximum Dynamic V _{OL}	5.0	0.6	0.9	V	C _L = 50 pF	
V _{OLV} (Note 3)	Quiet Output Minimum Dynamic V _{OL}	5.0	-0.6	-0.9	V	C _L = 50 pF	
V _{IHD} (Note 3)	Minimum HIGH Level Dynamic Input Voltage	5.0		3.5	V	C _L = 50 pF	
V _{ILD} (Note 3)	Maximum LOW Level Dynamic Input Voltage	5.0		1.5	V	C _L = 50 pF	

Note 3: Parameter guaranteed by design.

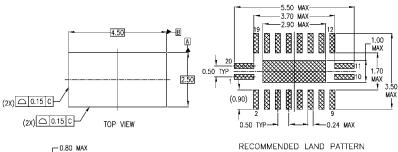
AC Electrical Characteristics

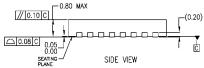
Symbol	Parameter	v _{cc}	T _A = 25°C		T _A = -40°	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Conditions		
		(V)	Min	Тур	Max	Min	Max	Units	Conditions	
f _{MAX}	Maximum Clock	3.3 ± 0.3	75	120		65		MHz		C _L = 15 pF
	Frequency		50	75		45		IVITIZ		$C_L = 50 pF$
		5.0 ± 0.5	120	165		100		MHz		C _L = 15 pF
			80	110		70		IVITIZ		$C_L = 50 pF$
t _{PLH}	Propagation Delay	3.3 ± 0.3		8.7	13.6	1.0	16.0	ns		C _L = 15 pF
t _{PHL}	Time (CK - Q)			11.2	17.1	1.0	19.5			$C_L = 50 pF$
		5.0 ± 0.5		5.8	9.0	1.0	10.5	ns		C _L = 15 pF
				7.3	11.0	1.0	12.5	115		$C_L = 50 pF$
t _{PHL}	Propagation Delay	3.3 ± 0.3		8.9	13.6	1.0	16.0	ns		C _L = 15 pF
	Time (MR - Q)			11.4	17.1	1.0	19.5	115		C _L = 50 pF
		5.0 ± 0.5		5.2	8.5	1.0	10.0	ns		C _L = 15 pF
				6.7	10.5	1.0	12.0	115		$C_L = 50 pF$
toslh	Output to	3.3 ± 0.3			1.5		1.5	no	(Note 4) C _L	C _L = 50 pF
toshl	Output Skew	5.0 ± 0.5			1.0		1.0	ns		$C_L = 50 pF$
C _{IN}	Input Capacitance			4.0	10.0		10.0	pF	V _{CC} = Ope	n
C _{PD}	Power Dissipation Capacitance			31				pF	(Note 5)	

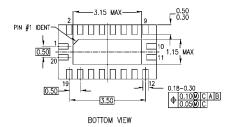

 $\textbf{Note 4:} \ \ \text{Parameter guaranteed by design } \\ t_{OSLH} = |t_{PLH} \\ \text{max} - t_{PLH} \\ \text{min}|; \\ t_{OSHL} = |t_{PHL} \\ \text{max} - t_{PHL} \\ \text{min}|.$

Note 5: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained from the equation: I_{CC} (opr.) = C_{PD} * V_{CC} * f_{IN} + I_{CC} /8 (per F/F). The total C_{PD} when n pieces of the Flip-Flop operates can be calculated by the equation: C_{PD} (total) = 22 + 9n.

AC Operating Requirements

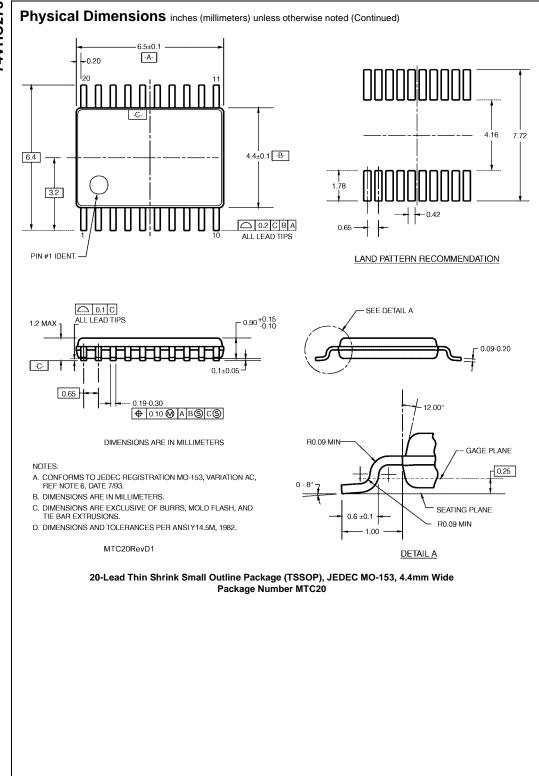

Symbol		V _{CC}	T _A =	25°C	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	Units
	Parameter	(V) (Note 6)	Тур	Guara	nteed Minimum	
t _W (L)	Minimum Pulse Width (CK)	3.3		5.5	6.5	ns
$t_W(H)$		5.0		5.0	5.0	115
t _W (L)	Minimum Pulse Width (MR)	3.3		5.0	6.0	
		5.0		5.0	5.0	ns
t _S	Minimum Setup Time	3.3		5.5	6.5	ne
		5.0		4.5	4.5	ns
t _H	Minimum Hold Time	3.3		1.0	1.0	ns
		5.0		1.0	1.0	115
t _{REC}	Minimum Removal Time (MR)	3.3		2.5	2.5	
		5.0		2.0	2.0	ns

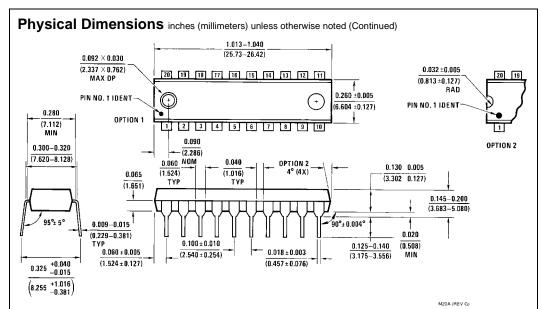

Note 6: V_{CC} is $3.3 \pm 0.3 V$ or $5.0 \pm 0.5 V$



Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 2.6±0.10 0.40 TYP --A-5.01 TYP 5.3±0.10 9.27 TYP 7.8 -B-3.9 0.2 C B A ALL LEAD TIPS 10 PIN #1 IDENT.-0.6 TYP 1.27 TYP -LAND PATTERN RECOMMENDATION ALL LEAD TIPS SEE DETAIL A 0.1 C 2.1 MAX. 1.8±0.1 0.15±0.05 0.15-0.25 -1.27 TYP 0.35-0.51 **♦** 0.12 **⋈** C A DIMENSIONS ARE IN MILLIMETERS GAGE PLANE 0.25 NOTES: A. CONFORMS TO EIAJ EDR-7320 REGISTRATION, ESTABLISHED IN DECEMBER, 1998. B. DIMENSIONS ARE IN MILLIMETERS. C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS. 0.60±0.15 SEATING PLANE 1.25 -M20DRevB1 DETAIL A 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide Package Number M20D

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)




NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MO-241, VARIATION AC
 B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994

MLP020BrevA

20-Terminal Depopulated Quad Very-Thin Flat Pack No Leads (DQFN), JEDEC MO-241, 2.5 x 4.5mm Package Number MLP020B (Preliminary)

20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com