

SANYO Semiconductors DATA SHEET

CMOSIC _C823410-10R — Ultra-Low Power Consumption 7.0mW Large-Scale System LSI, GokLow, for IC Recorders

Overview

The LC823410-10R is a system IC that uses ultra-low power consumption technology to realize long-time playback and recording, and has various IC recorder functions. The IC is optimal for use in IC recorder applications.

Features

- ARM7TDMI-S^{TM *1}, AMBA[®] (AHB/APB) system
 - -On-chip SRAM (160kbytes)
 - -On-chip ROM (256kbytes)
 - -DMA controller (2 channels)
 - -Interrupt controller (external 6 channels)
 - -SIO (2 channels), UART (3 channels, of which 2 channels run on the 12MHz oscillator XT1.)

Continued on next page.

ARM ARM *1: ARM logo, ARM Powered logo and, ARM7TDMI are registered trademark of ARM Limited.

Supply of this product does not convey license nor imply any right to distribute content created with this product in revenue-generating broadcast systems (terrestrial, satellite, cable and/or other distribution channels), streaming applications (via Internet, intranets and/or networks), other content distribution systems (pay-audio or audio-on-demand applications and the like) or on physical media (compact discs, digital versatile discs, semiconductor chips, hard drives, memory cards and the like).

Supply of this product does not convey license under the relevant intellectual property of Thomson and/or Fraunhofer Gesellschaft nor imply any right to use this product in any finished end user or ready-to-use final product. An independent license for such use is required. For details, please visit http://mp3licensing.com/.

- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications of our customer who is considering such use and/or outside the scope of our intended standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

SANYO Semiconductor Co., Ltd. http://semicon.sanyo.com/en/network

Continued from preceding page.

- -I²C (1 channel, single master, full speed mode/standard mode support)
- -GPIO (multiplexed port I/O pin, 32 channels)
- -Plain timer, multiple timer (2 channels, runs on the 12MHz oscillator XT1)
- -10-bit A/D converter (4 channels)
- -NAND flash memory I/F (multi-level cell NAND)
- 4-bit correctable ECC, automatic correction of error bits
- -SD card I/F (CPRM not supported) [optional]
- SD card clock can be generated through AHB clock.
- -Memory stick I/F [optional]
- -USB2.0 device I/F with PHY
- Communication operation possible even when the AHB runs at a low clock rate. Insertion/extraction detection possible even when the PHY clock is stopped.
- -RTC (realtime clock)
- Operation at a voltage independent from the internal core operating voltage, and RTC only power on operation possible.
- -JTAG ICE
- MP3^{*2} hard-wired encoder/decoder
 - -MPEG1, MPEG2, MPEG2.5
 - (Fs=8kHz to 48kHz, 8kbps to 320kbps)
- High quality sound technologies & functions (<u>underlined</u> functions support 96kHz sampling)
 - -SANYO "AViSS" surround circuit
 - -YY filter high frequency compensation circuit (2 modes, LP2: High bit rate and LP4: Low bit rate)
 - -Sampling rate converter. Convertible up to 96kHz (max.) within the range of 0.5 to 64 times
 - -6-band equalizer. Equalizer characteristics can be adjusted by setting the coefficient.
 - -Digital volume and mute functions (except the recording system). Both dB and linear rate of change can be designated.
 - -Level meter (except the recording system)
- -Audio timer function. LR clock count and interrupt generation function
- On-chip 16-bit PCM input/output interface. Master/slave mode, I²S support
- 12MHz oscillator XT1 + PLL dedicated for audio enable audio clock generation Also supports audio operations using 16.9344MHz oscillator XT2 (optional).
- Supply voltages (typical)
 - -LOGIC, USB PHY1, XTAL, PLL1, RTC = 1.1V (when no USB devices connected) or 1.5V (when USB devices connected)
 - -I/O, ADC, USB PHY2, PLL2 = 2.8V (when no USB devices connected) or 3.3V (when USB devices connected)

*2: MPEG Layer-3 audio coding technology licensed from Fraunhofer IIS and Thomson.

Specifications

Absolute Maximum Ratings at $*V_{SS}* = 0V$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{DD} 1 V _{DD} RTC V _{DD} XT AV _{DD} PHY1 AV _{DD} PLL1		-0.3 to 1.8	V
	V _{DD} 2 V _{DD} 3 AV _{DD} ADC AV _{DD} PHY2 AV _{DD} PLL2		-0.3 to 3.96	V
Input voltage	VI		-0.3 to *V _{DD} *+0.3 (max3.96)	V
	VIUSB	DP and DM pins	-0.3 to 5.25	V
Operating ambient temperature	Topr		-30 to +70	°C
Storage ambient temperature	Tstg		-55 to 125	°C

Allowable Operating Range at Ta = -30 to $+70^{\circ}C$

Deremeter	Symphol	Conditions	Low '	Voltage Oper	ation	High	Voltage Oper	ation	Unit
Parameter	Symbol	Symbol Conditions		typ	max	min	typ	max	Unit
Supply voltage	V _{DD} 1		1.05	1.1	1.2	1.35	1.5	1.65	V
	V _{DD} XT		1.05	1.1	1.2	1.35	1.5	1.65	V
	AV _{DD} PLL1		1.05	1.1	1.2	1.35	1.5	1.65	V
	AV _{DD} PLL2		2.7	2.8	3.3	2.7	2.8	3.6	V
	V _{DD} RTC		0.9	1.1	1.65	0.9	1.5	1.65	V
	V _{DD} 2		2.7	2.8	3.3	2.7	2.8	3.6	V
	V _{DD} 3		2.7	2.8	3.3	2.7	2.8	3.6	V
			1.7	1.8	1.95	1.7	1.8	1.95	V
	AV _{DD} ADC		2.7	2.8	3.3	2.7	2.8	3.6	V
	AV _{DD} PHY1		1.05(*1)	1.1	1.2	1.35	1.5	1.65	V
	AV _{DD} PHY2		2.7(*1)	2.8	3.3	3.0	3.3	3.6	V
Input voltage	VIN		0		*V _{DD} *	0		*V _{DD} *	V

(*1) In the low-voltage operation state, although transition from this state to the high-voltage operation state and operation after the transition are guaranteed, all operations are not guaranteed in the low-voltage state.

(*2) The relations below are assumed in all operation states.

• V_{DD}1=V_{DD}XT=AV_{DD}PLL1=AV_{DD}PHY1

- AVDDPHY2>=AVDDADC
- $V_{DD}2 > = AV_{DD}PLL2$
- V_{DD}2>=V_{DD}3
- where,
- V_{DD} 1, V_{DD} XT, and AV_{DD}HY1 have the same electrical potential because they are connected within the IC.
- AVDDPLL1>=VDD1
- Besides the above two points, voltage differences up to 0.1V are considered to be equal. Also, during RTC-only operation,

The above $V_{DD}RTC$ voltage can be applied at BACKUPB = Low input and application of $V_{DD}^* = 0V$ except for $V_{DD}RTC$.

(*3) Low-voltage operation: This is an operation state that enables low power consumption during music playback and other operations.

High-voltage operation: This is an operation state on the assumption that USB is used.

Descention	O mark al	Function	Low	Voltage Ope	ration	High	Voltage Ope	ration	1.1
Parameter	Symbol	Function	min	typ	max	min	typ	max	Unit
Input oscillation	Fxin1	ARM & Peripherals		12		12MHz	±100p-pm (ι	ising USB)	MHz
frequency	FxinRTC	RTC		32.768			32.768		kHz
	Fxin2	AUDIO		16.9344			16.9344		MHz
	Frc	RC	0.4	1	2	0.4	1	2	MHz
Internal operating	Fahb	ARM AHB	0		30	0		60	MHz
frequency	Fapb	ARM APB	0		30	0		60	MHz
	Faud	AUDIO	0	16.9344	36.864	0	16.9344	36.864	MHz
SD I/F	Fsdclk	Normal			19			24	MHz
clock frequency		High speed (V _{DD} 3>=2.7V SDDRV=1)			25			40	MHz
MS I/F	Fsclk	Parallel			30			30	MHz
clock frequency		Serial			20			20	MHz

DC characteristic at Ta = -30 to +70°C, $V_{DD}2 = 2.7$ to 3.6V, $V_{DD}RTC = 0.9$ to 1.65V, $V_{DD}3=1.7$ to 1.95V, 2.7 to 3.6V

Parameter	Cumbal	Pins	Conditions		Ratings		Unit
Parameter	Symbol	Filis Conditions		min	typ	max	Unit
Input high level voltage	VIH	(1)		0.7×V _{DD} 2			V
		(2)	Schmitt	0.75×V _{DD} 2			V
		(3)		0.7×V _{DD} RTC			V
Input low level voltage	VIL	(1)				0.3×V _{DD} 2	V
		(2)	Schmitt			0.25×V _{DD} 2	V
		(3)				0.2×V _{DD} RTC	V
Output high level voltage	VOH	(4)	I _{OH} =-2mA	V _{DD} 2-0.4			V
		(5)	I _{OH} =-4mA	V _{DD} 3-0.34			V
		(6)	I _{OH} =-0.3mA	V _{DD} RTC-0.3			V
Output low level voltage	V _{OL}	(4)	I _{OL} =2mA			0.4	V
		(5)	I _{OL} =4mA			0.34	V
		(6)	I _{OL} =0.3mA			0.3	V
Output leakage current	I _{OZ}	(7)	Hi-Z output	-10		10	μA
Pull-up resistor	Rup	(8)		50	100	150	kΩ
Pull-up resistor	Rup	(9)		30	45	80	kΩ
Pull-down resistor	Rdn	(10)		40	70	160	kΩ
Pull-down resistor	Rdn	(11)		20	50	90	kΩ

(1) FD7-0, SDCMD, SDAT3-0, BCK, LRCK, MCLK, SCL, SDA, TIOCA1-0, SDI1, RXD2-0, SDO0, TXD2-0, XFCE1-0, PHI, TCK, TDI, TMS, SDI0, DIN, SDCD, SDWP

(2) TEST6-1, NTRST, NRES, EXTINT6-0, EXTFIQ, SCK1-0, XFBSY

(3) BACKUPB, VDET

(4) SCK1-0, FD7-0, EXD15-0, BCK, LRCK, MCLK, SCL, SDA, TIOCA1-0, SDI1, SDI0, RXD2-0, TXD2-0, XFCE1-0, PHI, EXTFIQ, EXTINT4-0, DOUT, RTCK, TDO, XALE, XCLE, XFRE, XFWE, XFWP

(5) SDCLK, SDCMD, SDAT3-0

(6) RTCINT

(7) SCK1-0, FD7-0, SDCMD, SDAT4-1, BCK, LRCK, MCLK, SCL, SDA, TIOCA1-0, SDI1, RXD2-0, SDO1-0, TXD2-0, XFCE1-0, PHI, EXTFIQ, EXTINT4-0, RTCK, XALE, XCLE, XFRE, XFWE, XFWP, RTCINT

- (8) EXTFIQ, SCK1, SDO1, TXD2-0, RXD2-0, TIOCA1-0, SDI1, EXTINT4-0, XFCE1-0, SCL, SDA, LRCK, MCLK, PHI, SCK0, SDI0, SDO0, TCK, TDI, TMS, NTRST ,XFWE, XFRE, XALE, XCLE, XFWP
- (9) SDCMD, SDAT3-0, SDCD
- (10) SDAT3-0
- (11) DIN, FD7-0

(Caution)

The following pins are not included in DC characteristics.

RREF, DM, DP, VCNT1, VCNT2, AN3-0, XIN1, XIN2, XIN32K, XOUT1, XOUT2, XOUT32K

PLL1 Characteristics at Ta = -30 to $+70^{\circ}C$

Parameter	Sumbal	Conditions	AV _D	DPLL1=1.05	to 1.2V	AV _D	to 1.65V	Unit	
Parameter	Symbol	Conditions	min	typ	max	min	typ	max	Unit
VCO voltage	VCNT1		0		AV _{DD} PLL1	0		AV _{DD} PLL1	V
VCO maximum oscillation frequency	Fmax		90			180			MHz
VCO minimum oscillation frequency	Fmin				60			60	MHz
Phase comparison frequency	Fref				30			30	MHz
PLL lock time	Tlock			5	10		5	10	ms

PLL2 Characteristics at Ta = -30 to +70°C, $AV_{DD}PLL2 = 2.7$ to 3.6V

Deremeter	Sumbol	Conditions			Unit	
Parameter	Symbol	Conditions	min	typ	max	Unit
VCO voltage	VCNT2		0		AV _{DD} PLL2	V
VCO maximum oscillation frequency	Fmax		40			MHz
VCO minimum oscillation frequency	Fmin				15 (*1)	MHz
Phase comparison frequency	Fref				17	MHz
PLL lock time	Tlock			10	15	ms

(*1) When a clock with a frequency lower than 15MHz is required, for example 12.288MHz (= 32kHz * 384, audio circuit operation clock at a sampling frequency of 32kHz), this is generated by frequency dividing the clock by 2 as follows.

12.288MHz = 24.576MHz/2

10-bit AD Converter Characteristics at $Ta = 25^{\circ}C$, $AV_{DD}ADC = 3.3V$, $AV_{SS}ADC = 0V$

	Oursels al	Oraclitican		Ratings		Unit	Pin	
Parameter	Symbol	Conditions	min	typ	max	Unit	Pin	
ADC power supply	VAVRH		2.7		3.6	V	AV _{DD} ADC	
ADC ground voltage	VAVRL		0			V	AV _{SS} ADC	
Analog input voltage	VAN		VAVRL		VAVRH	V	AN3-AN0	
ADC resolution	Ν				10	Bit	AN3-AN0	
ADC operation clock	FC				16.5	MHz		
ADC conversion frequency	Fs				1.04	MHz		
ADC sample hold time	Twr		120			ns		
Differential linearity error	FDIF	NEFFECT=10			±1.5	LSB	AN3-AN0	
Linearity error	FLN	NEFFECT=10			±4.0	LSB	AN3-AN0	
Zero-scale offset voltage (Transit voltage from 0 to 1)	Vtz		VAVRL-0.1	VAVRL	VAVRL+0.1	V	AN3-AN0	
Full-scale offset voltage (Transit voltage from 1022 to 1023)	Vtf		VAVRH-0.1	VAVRH	VAVRH+0.1	V	AN3-AN0	
Ladder stabilization time (*1)	Tstr	After STBY released	1			μs		
Reference resistor (*1)	Rr			770		Ω		
Power dissipation (*1)	Pd			15		mW		

(*1) All the characteristics are design values.

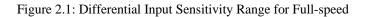
USB Interface Characteristics at Ta = -30 to +70°C, $V_{DD}1=1.35$ to 1.65V, $AV_{DD}PHY1=1.35$ to 1.65V, $AV_{DD}PHY2=3.0$ to 3.6V

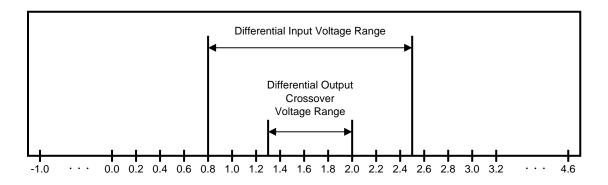
	AvDD	PHY2=3.0 to 3.6V	1		-	
Parameter	Symbol	Conditions		Ratings		Unit
Falamelei	Symbol	Conditions	min	typ	max	Unit
Output pin impedance	Z _{HSDRV}	Includes R _S resistor	40.5		49.5	Ω
Bus pull-up resistor on upstream forcing port	R _{PU1}	FS idle	0.900		1.575	kΩ
Bus pull-up resistor on upstream forcing port	R _{PU2}	FS receiving or transmitting	1.425		3.090	kΩ
Termination voltage for upstream forcing port pullup (full-speed)	VTERM		3.15		3.45	V
Input levels for full-speed:						
High-level input voltage (drive)	VIH		2.0			V
High-level input voltage (floating)	VIHZ		2.7		3.6	V
Low-level input voltage	VIL				0.8	V
Differential input sensitivity	V _{DI}	(D+)-(D-)	0.2			V
Differential common mode range	V _{CM}	Includes V _{DI} range Refer to figure 2.1	0.8		2.5	V
Output levels for full-speed:	•	-				
High-level output voltage	VOH	R _L of 14.25k Ω to V _{SS}	2.8		3.6	V
Low-level output voltage	VOL	R_L of 1.425k Ω to 3.6V	0.0		0.3	V
SE1	VOSE1		0.8			V
Output signal crossover point voltage	VCRS	Refer to figure 2.1	1.3		2.0	V
Input levels for high-speed:	1	•	т.			
High-speed squelch detection threshold (differential signal)	VHSSQ		100		150	mV
High-speed data signaling common mode voltage range	V _{HSCM}		-50		+500	mV
High-speed differential input signaling level	Refer to figu	ire 2.2				
Output levels for high-speed:						
High-speed idle state	VHSOI		-10.0		+10	mV
High-speed data signaling high	VHSOH		360		440	mV
High-speed data signaling low	VHSOL		-10.0		+10	mV
Chirp J level (different signal)	VCHIRPJ		700		1100	mV
Chirp K level (different signal)	VCHIRPK		-900		-500	mV
Time to active-state:						
Time from idle (standby/ suspend) state to active state (*)	T _{ACT}				1	ms

States identified by an asterisk (*)

• Idle (standby/suspend) state: Either one of the following 4 states:

- Either one of AV_{DD}PHY1 and AV_{DD}PHY2 is lower than the guaranteed operating voltage.


- (USB register) DeviceControl: SuspendSts=Susp3endSet=1 (USBPHY suspended state)


- (USB register) DeviceControl: RstPhy=1 (USBPHY reset state)

- (SYSCON register) USBCTL: SHSTBY=1 (USBPHY standby state)

For details on the registers, see the LC823410-09C-E User's Manual (Expansion Module).

• Active-state: Any state in which the IC is not in any of the Idle (standby/suspend) states.

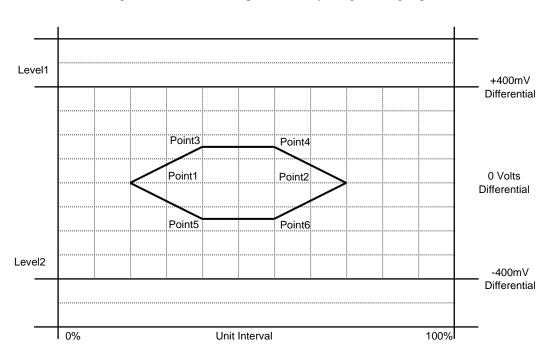
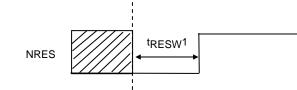
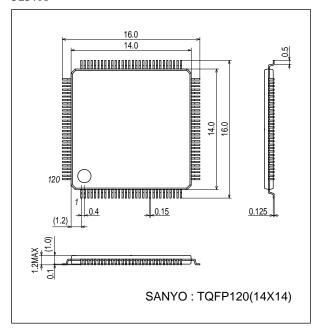
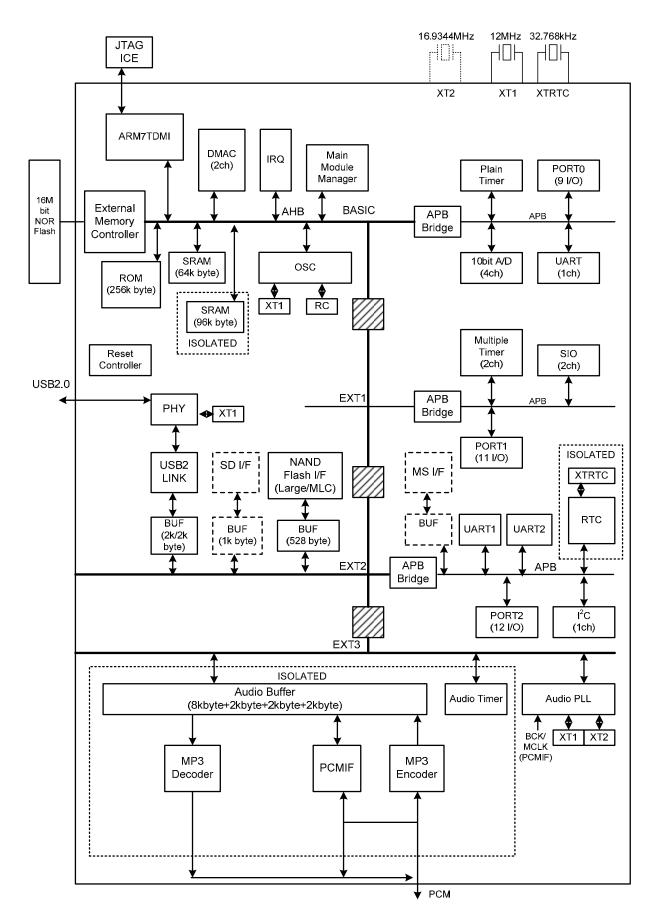



Figure 2.2: Differential Input Sensitivity Range for High-speed

LC823410-10R


AC Characteristics: Reset at Ta = -30 to $+70^{\circ}C$, $V_{DD}1 = 1.05$ to 1.65V, $V_{DD}2 = 2.7$ to 3.6V

Deservator	Querra ha a l	O an alitica a		Ratings		l la it	
Parameter	Symbol	Conditions	min	typ	max	Unit	
Reset active time	^t RESW ¹	Time after both of V_{DD} 1 and V_{DD} 2 reached within the allowable operation voltage range	10			μs	



Package Dimensions

unit : mm (typ) 3257A

Block Diagram

Pin Assignments

	I/O		Pin Ch	aracteristics	
Ι	Input pin	3IC	3.3V CMOS input	1IC	1.5V CMOS input
0	Output pin	3IS	3.3V Schmitt input	1T3	1.5V 0.3mA tristate output
В	Bi-directional pin	3ICU	3.3V CMOS input pullup	х	Oscillation amplifier
Р	Power supply pin	3ICD	3.3V CMOS input pulldown	ЗA	3.3V analog
		3ISU	3.3V Schmitt input pullup	1A	1.5V analog
		302	3.3V 2mA output		
		3T2	3.3V 2mA tristate output		
		306	3.3V 6mA output		
		3T6	3.3V 6mA tristate output		

No.	Name	I/O	Characteristic	Function
1	TEST3	I	3IS	Test pin (normally tied to low)
2	TEST4	I	3IS	Test pin (normally tied to low)
3	TEST5	I	3IS	Test pin (normally tied to low)
4	TEST6	I	3IS	Test pin (normally tied to low)
5	ТСК	I	3ICU	JTAG test clock
6	RTCK	0	302	JTAG test returned clock
7	NTRST	I	3ISU	JTAG test reset
8	TDI	I	3ICU	JTAG test data input
9	TMS	I	3ICU	JTAG test mode select
10	TDO	0	302	JTAG test data output
11	NRES	I	3IS	Reset input
12	PHI(P11)	В	3ICU/3T2	AHB bus clock output/32.768kHz clock output/GPIO
13	EXTFIQ(P2F)	В	3ISU/3T2	External FIQ interrupt/GPIO
14	SCK0(P08)	В	3ISU/3T2	Serial I/F 0 clock/GPIO
15	SDO0(P09)	В	3ICU/3T2	Serial I/F 0 output data/GPIO
16	SDI0(P0A)	В	3ICU/3T2	Serial I/F 0 input data/GPIO
17	SCK1(P14)	В	3ISU/3T2	Serial I/F 1 clock/GPIO
18	SDO1(P15)	В	3ICU/3T2	Serial I/F 1 output data/GPIO
19	SDI1(P16)	В	3ICU/3T2	Serial I/F 1 input data/GPIO
20	TXD1(P2A)	В	3ICU/3T2	UART1 transmit data/GPIO
21	RXD1(P2B)	В	3ICU/3T2	UART1 receive data/GPIO
22	TI0CA0(P19)	В	3ICU/3T2	Multiple timer input capture/output compare A0/GPIO
23	TI0CA1(P1B)	В	3ICU/3T2	Multiple timer input capture/output compare A1/GPIO
24	V _{DD} 1	Р		Digital 1.5V power supply
25	V _{DD} 2	Р		Digital 3.3V power supply
26	V _{SS}	Р		Digital ground
27	TXD0(P1D)	В	3ICU/3T2	UART0 transmit data/GPIO
28	RXD0(P1E)	В	3ICU/3T2	UART0 receive data/GPIO
29	XFWE(P01)	В	3ICU/3T2	NAND FLASH write enable
30	XFRE(P02)	В	3ICU/3T2	NAND FLASH read enable
31	XALE(P03)	В	3ICU/3T2	NAND FLASH address latch enable
32	XCLE(P04)	В	3ICU/3T2	NAND FLASH command latch enable
33	XFCE1(P1F)	В	3ICU/3T2	NAND FLASH chip enable 1/GPIO
34	XFCE0(P00)	В	3ICU/3T2	NAND FLASH chip enable 0/GPIO
35	XFWP(P05)	В	3ICU/3T2	NAND FLASH write protect/GPIO
36	XFBSY	1	3IS	NAND FLASH busy
37	FD0	В	3ICD/3T2	NAND FLASH data bit0
38	FD1	B	3ICD/3T2	NAND FLASH data bit
39	V _{DD} 2	P		Digital 3.3V power supply
40	V _{SS}	P		Digital ground

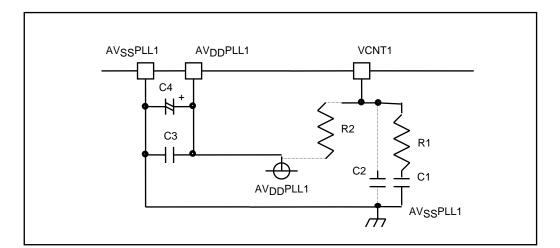
	n preceding page.		Characteristic	Function
No.		1/0	Characteristic	Function
41	FD2	В	3ICD/3T2	NAND FLASH data bit2
42	FD3	В	3ICD/3T2	NAND FLASH data bit3
43	FD4	В	3ICD/3T2	NAND FLASH data bit4
44	FD5	В	3ICD/3T2	NAND FLASH data bit5
45	FD6	В	3ICD/3T2	NAND FLASH data bit6
46	FD7	В	3ICD/3T4	NAND FLASH data bit7
47	EXTINT0(P21)	В	3ISU/3T2	External interrupt bit0/GPIO
48	EXTINT1(P22)	В	3ISU/3T2	External interrupt bit1/GPIO
49	EXTINT2(P23)	В	3ISU/3T2	External interrupt bit2/GPIO
50	EXTINT3(P24)	В	3ISU/3T2	External interrupt bit3/GPIO
51	EXTINT4(P25)	В	3ISU/3T2	External interrupt bit4/GPIO
52	V _{DD} 1	Р		Digital 1.5V power supply
53	V _{DD} 2	Р		Digital 3.3V power supply
54	V _{SS}	Р		Digital ground
55	DOUT	0	302	PCM output data
56	DIN	I	3ICD	PCM input data
57	ВСК	В	3IC/3T2	PCM bit clock
58	LRLK(P12)	В	3ICU/3T2	PCM LR clock/GPIO
59	MCLK(P13)	В	3ICU/3T2	PCM main clock/GPIO
60	SCL(P28)	В	3ICU/3T2	I ² C SCL clock/GPIO
61	SDA(P29)	В	3ICU/3T2	I ² C SDA data/GPIO
62	TXD2(P2C)	В	3ICU/3T2	UART2 transmit data/GPIO
63	RXD2(P2D)	В	3ICU/3T2	UART2 receive data/GPIO
64	TEST1	I	3IS	Test pin (normally tied to Low)
65	TEST2		3IS	Test pin (normally tied to Low)
66	V _{DD} 1	Р		Digital 1.5V power supply
67	SDWP	1	3IC	SD card write protect
68	SDCD/INS		3ICU	SD card detect/MSINS
69	SDCMD/BS	В	3ICU/3T6	SD card command/MSBS
70	SDCLK/SCLK	0	306	SD card clock/MS clock
70	SDAT0/DATA0	В	3ICUD/3T6	SD card data/MS data
72		P	516667,516	Digital ground
72	V _{SS} V _{DD} 3	P		Digital 3.3V/1.8V power supply
73		В		
	SDAT1/DATA1		3ICUD/3T6	SD card data/MS data
75	SDAT2/DATA2	В	3ICUD/3T6	SD card data/MS data
76	SDAT3/DATA3	В	3ICUD/3T6	SD card data/MS data
77	AV _{DD} PLL1	P		PLL1 analog power supply
78	AV _{SS} PLL1	P		PLL1 analog ground
79	VCNT1	0	1A	PLL1 VCO control
80	V _{DD} XT	Р		System /USB PHY oscillation amplifier 1.5V power suppl
81	V _{SS} XT	Р		System /USB PHY oscillation amplifier ground
82	X _{IN} 1	I	Х	System /USB PHY oscillation amplifier input
83	X _{OUT} 1	В	Х	System /USB PHY oscillation amplifier output
84	V _{DD} RTC	Р		RTC power supply
85	V _{SS} RTC	Р		RTC ground
86	XOUT32K	0	Х	RTC 32.768kHz oscillation amplifier output
87	XIN32K	I	Х	RTC 32.768kHz oscillation amplifier input
88	VDET	I	1IC	Voltage detect input
89	RTCINT	0	1T3	RTC interrupt output
90	BACKUPB	I	1IC	RTC mode (RTC only or whole IC)
91	AV _{DD} PHY1	Р		USB PHY 1.5V power supply
92	AV _{SS} PHY1	Р		USB PHY analog ground

No.		I/O	Characteristic	Function
93	AV _{SS} PHY1	Р		USB PHY analog ground
94	RREF	В	ЗA	USB PHY reference resistor
95	AV _{SS} PHY2	Р		USB PHY analog ground
96	AV _{DD} PHY2	Р		USB PHY analog 3.3V power supply
97	AV _{DD} PHY2	Р		USB PHY analog 3.3V power supply
98	AV _{SS} PHY2	Р		USB PHY analog ground
99	AV _{SS} PHY2	Р		USB PHY analog ground
100	AV _{SS} PHY2	Р		USB PHY analog ground
101	AV _{DD} PHY2	Р		USB PHY analog 3.3V power supply
102	DP	В	ЗA	USB D+
103	DM	В	ЗA	USB D-
104	AV _{SS} PHY2	Р		USB PHY analog ground
105	AV _{DD} PHY2	Р		USB PHY analog 3.3V power supply
106	AV _{DD} ADC	Р		A/D converter analog power supply
107	AN0	I	ЗA	A/D converter analog input Ch0
108	AN1	I	ЗA	A/D converter analog input Ch1
109	AN2	I	ЗA	A/D converter analog input Ch2
110	AN3	I	ЗA	A/D converter analog input Ch3
111	AV _{SS} ADC	Р		A/D converter analog ground
112	V _{SS}	Р		Digital ground
113	X _{IN} 2	I	Х	Audio 16.9344MHz oscillator input
114	X _{OUT} 2	0	Х	Audio 16.9344MHz oscillator output
115	V _{DD} 1	Р		Digital 1.5V power supply
116	AV _{DD} PLL2	Р		PLL2 analog power supply
117	AV _{SS} PLL2	Р		PLL2 analog ground
118	VCNT2	0	3A	PLL2 VCO control
119	V _{DD} 2	Р		Digital 3.3V power supply

Pin Functions

I	Input pin			
0	Output pin			
В	Bi-directional pin			
Р	Power supply pin			

Pin name	Direction	Count	Function	
(1) Clock, reset, system pin (12 pins)				
TEST[6:1]	I	6	Test pin	
NRES	I	1	Reset input	
X _{IN} 1	I	1	System/USB PHY oscillator amplifier input	
X _{OUT} 1	0	1	System/USB PHY oscillator amplifier output	
X _{IN} 2	I	1	Audio 16.9344MHz oscillator input	
X _{OUT} 2	0	1	Audio 16.9344MHz oscillator output	
PHI(P11)	O(B)	1	AHB bus clock output/32.768kHz clock output	
			Functions as P11 after hard reset	
(2) Interrupt (6 pins)				
EXTFIQ(P2F)	I(B)	1	External FIQ interrupt	
			Functions as P2F after hard reset	
EXTINT[4:0]	I(B)	5	External interrupt	
(P[25:21])			Functions as port after hard reset	


			23410-101
Continued from preceding page	e.		
Pin name	Direction	Count	Function
(3) NAND FLASH I/F (16 pins	;)		
XFCEO(P00)	O(B)	1	NAND FLASH chip enable 0 Functions as P00 after hard reset
XFCE1(P1F)	O(B)	1	NAND FLASH chip enable 1 Functions as P1F after hard reset
XFWE(P01)	O(B)	1	NAND FLASH write enable
XFRE(P02)	O(B)	1	Functions as P01 after hard reset NAND FLASH read enable
XALE(P03)	O(B)	1	Functions as P02 after hard reset NAND FLASH address latch enable
XCLE(P04)	O(B)	1	Functions as P03 after hard reset NAND FLASH command latch enable
XFWP(P05)	O(B)	1	Functions as P04 after hard reset NAND FLASH write protect
XFBSY	1	1	Functions as P05 after hard reset NAND FLASH busy
FD[7:0]	В	8	NAND FLASH data
(4) SD card I/F, MS I/F (8 pins		Ŭ	
SDWP0		1	SD card write protect
SDCD0/INS	1		SD card card detect / MSINS
	-	1	
SDCMD0/BS	В	1	SD card command / MSBS
SDCLK0/SCLK	0	1	SD card clock / MS clock
SDAT0[3:0]/DATA[3:0]	В	4	SD card data / MS data
(5) PCM I/F (5 pins)			
DOUT	0	1	PCM output data
DIN	I	1	PCM input data
BCK	В	1	PCM bit clock
LRCK(P12)	B(B)	1	PCM LR clock Functions as LRCK after hard reset
MCLK(P13)	B(B)	1	PCM main clock Functions as MCLK after hard reset
(6) Serial I/F (14 pins)			•
SCK0 (P08)	В	1	Serial I/F 0 clock Functions as P08 after hard reset
SDO0 (P09)	O (B)	1	Serial I/F 0 output data Functions as P09 after hard reset
SDI0 (P0A)	I (B)	1	Serial I/F 0 input data Functions as P0A after hard reset
SCK1 (P14)	B (B)	1	Serial I/F 1 clock Functions as P14 after hard reset
SDO1 (P15)	O (B)	1	Serial I/F 1 output data
SDI1 (P16)	I (B)	1	Functions as P15 after hard reset Serial I/F 1 input data
TXD0 (P1D)	O (B)	1	Functions as P16 after hard reset UART transmit data
RXD0 (P1E)	I (B)	1	Functions as P1D after hard reset UART receive data
TXD1 (P2A)	O (B)	1	Functions as P1E after hard reset UART1 transmit data
RXD1 (P2B)	I (B)	1	Functions as P2A after hard reset UART1 receive data
TXD2(P2C)	O (B)	1	Functions as P2B after hard reset UART2 transmit data
RXD2(P2D)	I (B)	1	Functions as P2C after hard reset UART2 receive data
SCL (P28)	B (B)	1	Functions as P2D after hard reset I ² C SCL clock (open drain output)
SDA (P29)	В (В)	1	Functions as P28 after hard reset I ² C SDA data (open drain output)
			Functions as P29 after hard reset

Pin name	Direction	Count	Function
(7)Timer (2 pins)			
TIOCA0 (P19)	B(B)	1	Multiple timer input capture/output compare A0
· · ·			Functions as P19 after hard reset
TIOCA1 (P1B)	B(B)	1	Multiple timer input capture/output compare A1
(8) JTAG (6 pins)			Functions as P1B after hard reset
TCK		1	JTAG test clock
RTCK	0	1	JTAG test returned clock
NTRST		1	JTAG test reset
TDI		1	JTAG test data input
TMS		1	JTAG test mode select
TDO	0	1	JTAG test data output
(9) RTC (5 pins)	0	I	
XOUT32K	0	1	RTC 32.768kHz oscillator amplifier output
XIN32K		1	RTC 32.768kHz oscillator amplifier input
VDET		1	Voltage detect input
RTCINT	0	1	RTC interrupt output
ВАСКИРВ	1	1	RTC mode (RTC only or LSI whole)
(10) PLL (2 pins)			
VCNT1	0	1	PLL1 VCO control
VCNT2	0	1	PLL2 VCO control
(11) USB (3 pins)	Ŭ		
DP	В	1	USB D+ (Device)
DM	B	1	USB D- (Device)
RREF	В	1	USB PHY reference resistor
(12) Analog (4 pins)			
AN[3:0]	1	4	Analog input
(13) Power supply pin (37	pins)		
V _{DD} 1	P	4	Digital 1.5V power supply
V _{DD} 2	Р	4	Digital 3.3V power supply
V _{DD} 3	Р	1	Digital 3.3V/1.8V power supply (SD card I/F, MS I/F power supply)
V _{SS}	Р	6	Digital ground
AV _{DD} PLL1	Р	1	PLL1 analog power supply
AV _{SS} PLL1	Р	1	PLL1 analog ground
AV _{DD} PLL2	Р	1	PLL2 analog power supply
AV _{SS} PLL2	Р	1	PLL2 analog ground
V _{DD} RTC	Р	1	RTC power supply
V _{SS} RTC	Р	1	RTC ground
V _{DD} XT	Р	1	Oscillation amplifier 1.5V power supply
V _{SS} XT	Р	1	Oscillation amplifier ground
AV _{DD} PHY1	Р	1	USB PHY analog 1.5V power supply
AV _{SS} PHY1	Р	2	USB PHY analog ground
AV _{DD} PHY2	Р	4	USB PHY analog 3.3V power supply
AV _{SS} PHY2	Р	5	USB PHY analog ground
AV _{DD} ADC	Р	1	A/D converter analog power supply
AV _{SS} ADC	Р	1	A/D converter analog ground

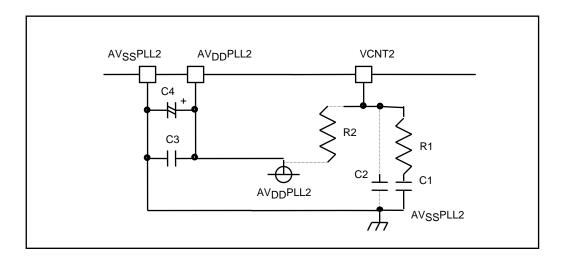
Peripheral Circuit Example

PLL Peripheral Circuit 1 (for system)

The PLL1 circuit configuration is shown in the figure below. On the wiring board, connect the decoupling capacitors as close as possible to the pin, and separate the power line from other power supply lines to minimize noise.

Symbol	Value	Model or Accuracy	
R1	100 to 200Ω	±5%	
R2	*MΩ	±5%	
C1	0.1 to 0.22µF	Capacitance error: ±10% Temperature characteristics: ±10%	
C2	(Approx. C1/100)		
C3	0.1µF	(-25 to +85°C)	
C4 33µF		16CV33BS	

* C4: This is based on SANYO Electric's Surface Mount Device Catalog (CV-BS Series).


Note:

Generally, use R2 and C2 without mounting.

However, if there is a problem that affects the PLL characteristics, the PLL characteristics may be improved by mounting R2 and C2. Therefore, be sure to prepare R2 and C2 wiring patterns beforehand.

PLL Peripheral Circuit 2 (for audio)

The PLL2 circuit configuration is shown in the figure below. On the wiring board, connect the decoupling capacitors as close as possible to the pins, and separate the power line from other power supply lines to minimize noise.

Symbol	Value	Model or Accuracy
R1	100 to 200Ω	±5%
R2	*MΩ	±5%
C1	1.0 to 2.0μF	Capacitance error: ±10%
C2	(Approx. C1/100)	Temperature characteristics: ±10%
C3	0.1µF	(-25 to +85°C)
C4	33µF	16CV33BS

* C4: This is based on SANYO Electric's Surface Mount Device Catalog (CV-BS Series).

Note:

Generally, use R2 and C2 without mounting.

However if there is a problem that affects the PLL characteristics, the PLL characteristics may be improved by mounting R2 and C2. Therefore, be sure to prepare R2 and C2 wiring patterns beforehand.

Reference

For audio applications, experiments have confirmed that

C1=1.0µF, C2=0.01µF

can be effective in maximizing the jitter reduction of the PLL output clock.

(Note that this depends on the board and other environmental conditions, and the result is not guaranteed.)

USB2.0 Peripheral Circuit

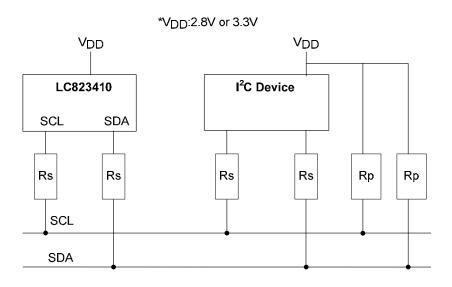
Be sure to always observe the items below when designing the circuit board.

• Differential impedance control

The DP/DM routing width, routing clearance, and PCB layer spacing must be determined so that differential impedance of 90Ω can be achieved. We recommend a microstrip structure for realizing impedance matching.

• Power supply (AV_{DD}PHY2, AV_{DD}PHY1) and ground (AV_{SS}PHY2, AV_{SS}PHY1) lines The separation of the power line and ground line only for USB usage is recommended. At a minimum, insert 10 μ F, 0.1 μ F, and 0.01 μ F capacitors between the power supply and ground for filtering. To reject high-frequency noise, inserting the 0.01 μ F capacitor directly under the power pin and ground pin is recommended.

Note that $0.1\mu F$ capacitor is also effective for latch-up protection.

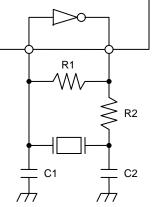

• Crystal oscillator

Use a crystal oscillator connected to the X_{IN1} and X_{OUT1} pins that has a fundamental wave of 12MHz, oscillation accuracy of 100p-pm or less, and place it near the IC.

• Reference resistor

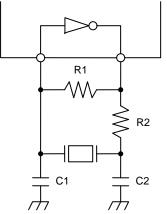
Connect the RREF pin to the ground near the IC through the 680Ω (tolerance 1% or less) reference resistor.

I²C Peripheral Circuit

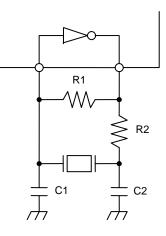


For the Rs and Rp values, see the I^2C standards.

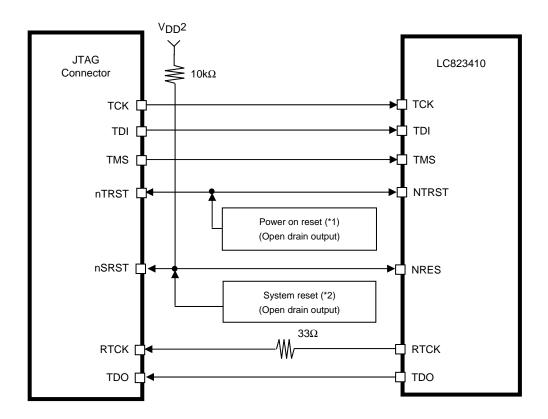
XTAL Peripheral Circuit


XTAL1 (12MHz)

12MHz oscillation amplifier RC reference values \rightarrow R1=1M Ω , R2=0 Ω , C1=C2=22pF Applicable pins: XIN1, XOUT1 |


XTAL2 (16.9344MHz)

16.9344MHz oscillation amplifier RC reference values \to R1=1MΩ, R2=0Ω, C1=C2=22pF Applicable pins: X_{IN}2, X_{OUT}2

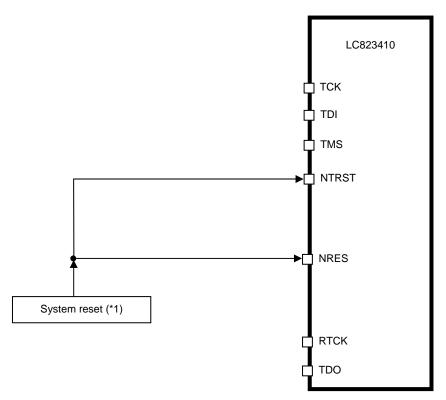

XTALRTC (32.768kHz)

32.768kHz oscillation amplifier RC reference values \rightarrow R1=5.1M Ω , R2=330k Ω , C1=C2=22pF Applicable pins: XIN32K, XOUT32K

(Reference) Oscillator product: DT-38 (DAISHINKU Corp.)

JTAG Pin Treatment Examples (both for use of ICE and non-use of ICE)

- (*1) The power-on reset is a reset signal that becomes active-low only when the power is turned on. Set so that the NTRST pin is reset only by a reset from JTAG and power-on reset.
- (*2) System reset includes a power-on reset and a reset signal, requested by the system, that becomes active-low by a manual reset or other means.

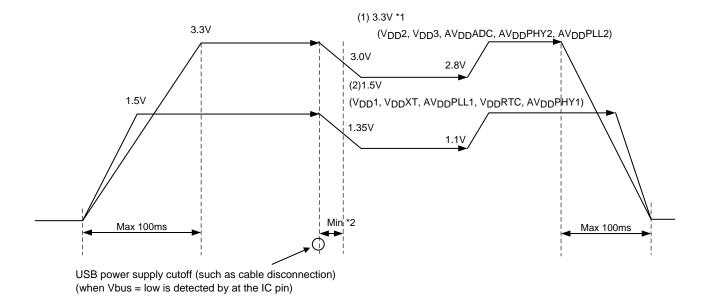

Set so that the NRES pin is reset by the reset from JTAG and by system reset.

See the data sheet for the NRES pin reset specifications. The NTRST pin has the same specifications as those of the NRES pin.

The power-on reset (open drain output) can be implemented, for example, by connecting it to the ground through a capacitor.

The above configuration is a peripheral circuit example that assumes the use of a JTAG ICE by YDC (Yokogawa Digital Computer) and can be applied both in cases where ICE is and is not used. To use other products, inquire at the manufacturer.

JTAG Pin Treatment Examples (non-use of ICE)


(*1) System reset includes a power-on reset that becomes active-low only when power is turned on, or a reset signal, requested by the system, that becomes active-low by a manual reset or other means.

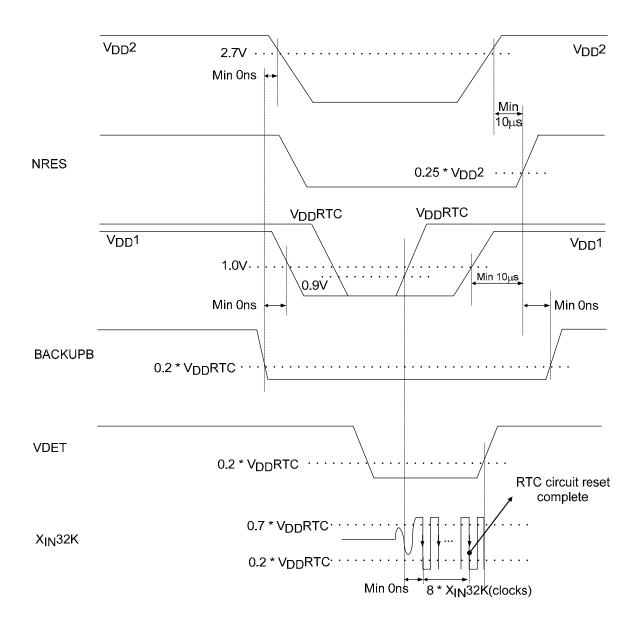
The NTRST pin has the same specifications as those of the NRES pin, and at least a power-on reset must be implemented.

As shown in this example, system reset can be connected to the NRES pin directly.

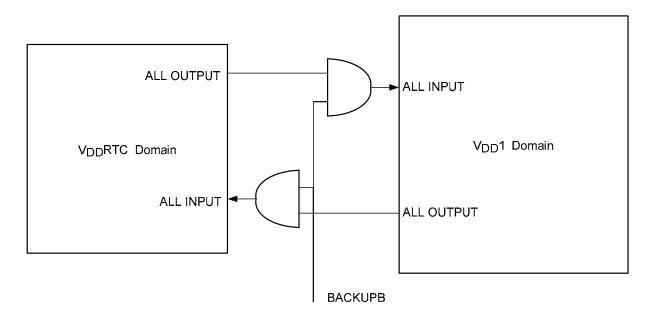
The above configuration is a simplified example of a peripheral circuit in the case that ICE is not used.

Power-on Sequence

*1 The following relations must be satisfied.


• AVDDPHY2>=AVDDADC VDD2>=AVDDPLL2 VDD2>=VDD3

*2


• This is a period required only when the AHB clock is operating at a frequency higher than the internal operating frequency guaranteed by $V_{DD}1 >= 1.35V$, and this is needed for switching to an operating frequency guaranteed by $V_{DD}1 >= 1.0V$. The minimum time depends on the system. For the guaranteed operating frequency at each voltage, see the data sheet.

RTC Pin Power On/Off Control Sequence

When running RTC only at power-off of the device, it is required to detect the voltage drop of $V_{DD}1$, $V_{DD}2$ and set BACKUPB to low. Determine the detection level of $V_{DD}1$ and $V_{DD}2$ according to the conditions of the device. The VDET pin needs to be set to low when the RTC power supply is cut off (when RTC operation is stopped). Also, when drop in the RTC power supply voltage is detected, VDET must be set to low. The figure below shows the power on/off sequence when the detection level of $V_{DD}RTC$ is 0.9V or less. Determine the detection level of $V_{DD}RTC$ according to the conditions of the device.

(Reference: Internal control by BACKUPB)

NOTE: VDD1 can be shut down while BACKUPB=Low

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of June, 2010. Specifications and information herein are subject to change without notice.