74ABT543A Octal latched transceiver with dual enable; 3-state Rev. 03 – 26 January 2010 Produ

Product data sheet

1. General description

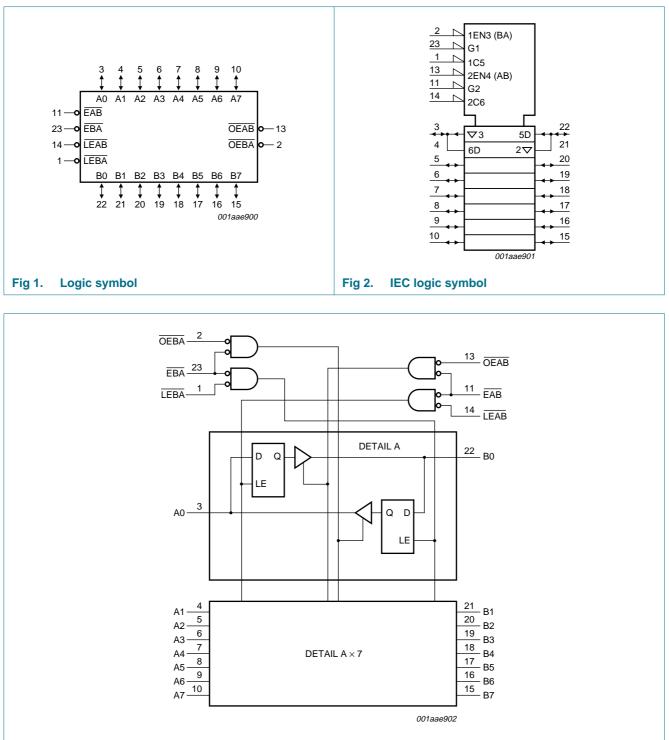
The 74ABT543A high performance BiCMOS device combines low static and dynamic power dissipation with high speed and high output drive.

The 74ABT543A octal registered transceiver contains two sets of D-type latches for temporary storage of data flowing in either direction. Separate latch enable ($\overline{\text{LEAB}}$, $\overline{\text{LEBA}}$) and output enable ($\overline{\text{OEAB}}$, $\overline{\text{OEBA}}$) inputs are provided for each register to permit independent control of data transfer in either direction. The outputs are guaranteed to sink 64 mA.

2. Features

- Combines 74ABT245 and 74ABT373 type functions in one device
- 8-bit octal transceiver with D-type latch
- Back-to-back registers for storage
- Separate controls for data flow in each direction
- Live insertion and extraction permitted
- Output capability: +64 mA to -32 mA
- Power-up 3-state
- Power-up reset
- Latch-up protection exceeds 500 mA per JESD78B class II level A
- ESD protection:
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V

3. Ordering information


Table 1.Ordering information

Type number	Package									
	Temperature range	Name	Description	Version						
74ABT543AD	–40 °C to +85 °C	SO24	plastic small outline package; 24 leads; body width 7.5 mm	SOT137-1						
74ABT543ADB	–40 °C to +85 °C	SSOP24	plastic shrink small outline package; 24 leads; body width 5.3 mm	SOT340-1						
74ABT543APW	–40 °C to +85 °C	TSSOP24	plastic thin shrink small outline package; 24 leads; body width 4.4 mm	SOT355-1						

Octal latched transceiver with dual enable; 3-state

4. Functional diagram

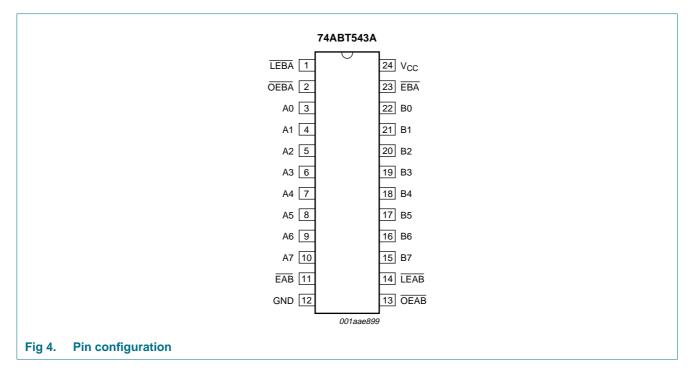


Fig 3. Logic diagram

Octal latched transceiver with dual enable; 3-state

5. Pinning information

5.1 Pinning

5.2 Pin description

Table 2.	Pin description		
Symbol		Pin	Description
LEBA		1	B-to-A latch enable input (active LOW)
OEBA		2	B-to-A output enable input (active LOW)
A0 to A7		3, 4, 5, 6, 7, 8, 9, 10	data input or output
EAB		11	A-to-B enable input (active LOW)
GND		12	ground (0 V)
OEAB		13	A-to-B output enable input (active LOW)
LEAB		14	A-to-B latch enable input (active LOW)
B0 to B7		22, 21, 20, 19, 18, 17, 16, 15	data input or output
EBA		23	B-to-A enable input (active LOW)
V _{CC}		24	positive supply voltage

Octal latched transceiver with dual enable; 3-state

6. Functional description

Input	Output		Output	Status	
OEXX	EXX	LEXX	An or Bn	Bn or An	otatus
Н	Х	x	x	Z	disabled
Х	Н	Х	Х	Z	
L	Ŷ	L	h	Z	disabled + latch
			I	Z	
L	L	Ŷ	h	Н	latch + display
			I	L	
L	L	L	Н	Н	transparent
			L	L	
L	L	Н	Х	NC	hold

6.1 Function table

[1] H = HIGH voltage level;

h = HIGH voltage level one set-up time prior to the LOW-to-HIGH clock transition of $\overline{\text{LEXX}}$ or $\overline{\text{EXX}}$ (XX = AB or BA);

L = LOW voltage level;

I = LOW voltage level one set-up time prior to the LOW-to-HIGH clock transition of LEXX or EXX (XX = AB or BA);

 \uparrow = LOW-to-HIGH clock transition of $\overline{\text{LEXX}}$ or $\overline{\text{EXX}}$ (XX = AB or BA);

NC = no change;

X = don't care;

Z = high-impedance OFF-state.

6.2 Description

The 74ABT543A contains two sets of eight D-type latches, with separate control pins for each set.

Using data flow from A-to-B as an example, when the A-to-B enable (\overline{EAB}) input, the A-to-B latch enable (\overline{LEAB}) input and the A-to-B output enable (\overline{OEAB}) input are all LOW, the A-to-B path is transparent.

A subsequent LOW-to-HIGH transition of the \overline{LEAB} signal puts the A data into the latches where it is stored and the B outputs no longer change with the A inputs. With \overline{EAB} and \overline{OEAB} both LOW, the 3-state B output buffers are active and display the data present at the outputs of the A latches.

Control of data flow from B-to-A is similar, but using the EBA, LEBA, and OEBA inputs.

Octal latched transceiver with dual enable; 3-state

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+7.0	V
VI	input voltage		<u>[1]</u> –1.2	+7.0	V
Vo	output voltage	output in OFF-state or HIGH-state	<u>[1]</u> –0.5	+5.5	V
l _{IK}	input clamping current	V ₁ < 0 V	-18	-	mA
I _{OK}	output clamping current	V _O < 0 V	-50	-	mA
lo	output current	output in LOW-state	-	128	mA
Tj	junction temperature		[2] _	150	°C
T _{stg}	storage temperature		-65	+150	°C

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150 °C.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CC}	supply voltage		4.5	-	5.5	V
VI	input voltage		0	-	V _{CC}	V
V _{IH}	HIGH-level input voltage		2.0	-	-	V
V _{IL}	LOW-level input voltage		-	-	0.8	V
I _{OH}	HIGH-level output current		-32	-	-	mA
I _{OL}	LOW-level output current		-	-	64	mA
$\Delta t/\Delta V$	input transition rise and fall rate		0	-	10	ns/V
T _{amb}	ambient temperature	in free air	-40	-	+85	°C

9. Static characteristics

Table 6. Static characteristics

Symbol	Parameter	Conditions	25 °C			−40 °C to +85 °C		Unit
				Тур	Max	Min	Max	
V _{IK}	input clamping voltage	$V_{CC} = 4.5 \text{ V}; \text{ I}_{IK} = -18 \text{ mA}$	-1.2	-0.9	-	-1.2	-	V
011	HIGH-level output voltage	$V_I = V_{IL} \text{ or } V_{IH}$						
		V_{CC} = 4.5 V; I_{OH} = -3 mA	2.5	3.2	-	2.5	-	V
		V_{CC} = 5.0 V; I_{OH} = -3 mA	3.0	3.7	-	3.0	-	V
		V_{CC} = 4.5 V; I_{OH} = -32 mA	2.0	2.3	-	2.0	-	V
V _{OL}	LOW-level output voltage		-	0.3	0.55	-	0.55	V
V _{OL(pu)}	power-up LOW-level output voltage	V_{CC} = 5.5 V; I _O = 1 mA; V _I = GND or V _{CC}	-	0.13	0.55	-	0.55	V

74ABT543A_3

74ABT543A

Octal latched transceiver with dual enable; 3-state

	Static characteristics				05.00		40.00		
Symbol	Parameter	Conditions			25 °C		−40 °C to +85 °C		Unit
				Min	Тур	Max	Min	Max	
l _l	input leakage current	V_{CC} = 5.5 V; V_{I} = GND or 5.5 V							
		OEAB, OEBA		-	±0.01	±1.0	-	±1.0	μΑ
		An, Bn		-	±5.0	±100	-	±100	μΑ
I _{OFF}	power-off leakage current	V_{CC} = 0.0 V; V_{I} or V_{O} \leq 4.5 V		-	±5.0	±100	-	±100	μΑ
I _{O(pu/pd)}	power-up/power-down output current	$\label{eq:V_CC} \begin{array}{l} V_{CC} = 2.1 \ \text{V; } V_{O} = 0.5 \ \text{V;} \\ \hline V_{I} = GND \ \text{or} \ V_{CC}; \\ \hline \hline \hline OEAB, \ \hline \hline OEBA \ \text{don't care} \end{array}$	<u>[1]</u>	-	±5.0	±50	-	±50	μΑ
02	OFF-state output	V_{CC} = 5.5 V; V_{I} = V_{IL} or V_{IH}							
	current	V _O = 2.7 V		-	5.0	50	-	50	μΑ
		V _O = 0.5 V		-	-5.0	-50	-	-50	μΑ
I _{LO}	output leakage current	HIGH-state; $V_O = 5.5 V$; $V_{CC} = 5.5 V$; $V_I = GND \text{ or } V_{CC}$		-	5.0	50	-	50	μA
lo	output current	$V_{CC} = 5.5 \text{ V}; V_{O} = 2.5 \text{ V}$	[2]	-180	-65	-40	-180	-40	mΑ
I _{CC}	supply current	V_{CC} = 5.5 V; V_{I} = GND or V_{CC}							
		outputs HIGH-state		-	110	250	-	250	μΑ
		outputs LOW-state		-	20	30	-	30	mΑ
		outputs disabled		-	110	250	-	250	μΑ
ΔI _{CC}	additional supply current	per input pin; V_{CC} = 5.5 V; one input pin at 3.4 V, other inputs at V_{CC} or GND	<u>[3]</u>	-	0.3	1.5	-	1.5	mA
CI	input capacitance	$V_I = 0 V \text{ or } V_{CC}$		-	4	-	-	-	pF
C _{I/O}	input/output capacitance	outputs disabled; V_{O} = 0 V or V_{CC}		-	7	-	-	-	pF

Table 6. Static characteristics ...continued

[1] This parameter is valid for any V_{CC} between 0 V and 2.1 V, with a transition time of up to 10 ms. From V_{CC} = 2.1 V to V_{CC} = 5 V ± 10 %, a transition time of up to 100 ms is permitted.

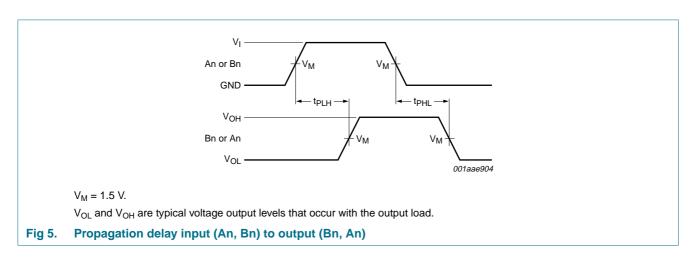
[2] Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

[3] This is the increase in supply current for each input at 3.4 V.

10. Dynamic characteristics

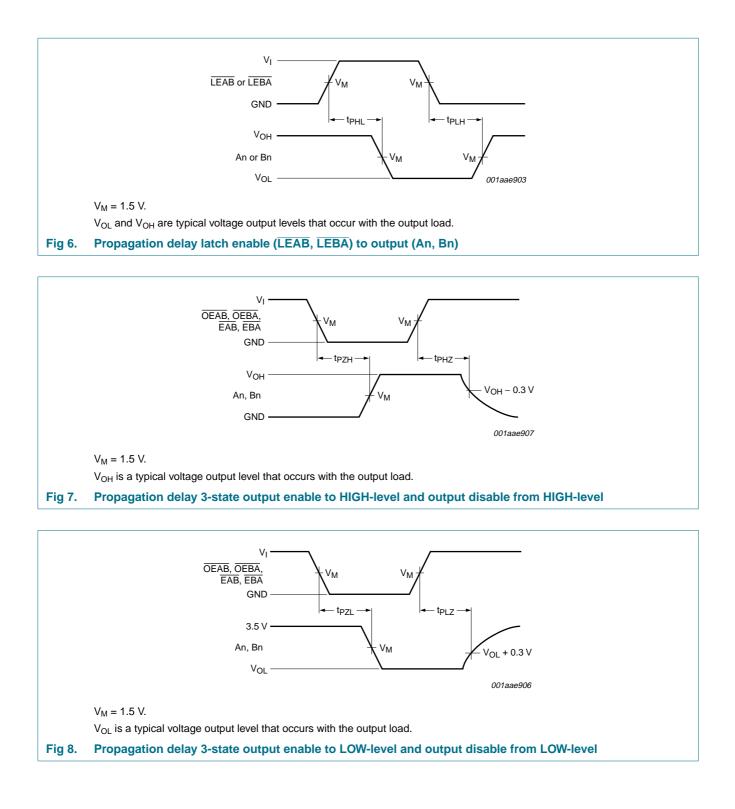
Table 7. Dynamic characteristics

GND = 0 V; for test circuit, see Figure 10.


Symbol	Parameter	Conditions		25 °C; V _{CC} = 5.0 V			–40 °C to +85 °C; V _{CC} = 5.0 V \pm 0.5 V		
			Min	Тур	Max	Min	Max		
t _{PLH}	t _{PLH} LOW to HIGH propagation delay	An to Bn or Bn to An; see Figure 5	1.0	2.9	4.5	1.0	5.2	ns	
		LEBA to An or LEAB to Bn; see Figure 6	1.0	3.4	5.1	1.0	6.2	ns	
t _{PHL}	HIGH to LOW	An to Bn or Bn to An; see Figure 5	1.9	3.6	5.2	1.9	5.7	ns	
	propagation delay	LEBA to An or LEAB to Bn; see Figure 6	2.1	4.3	6.0	2.1	6.7	ns	
t _{PZH}	· ····	OEBA to An, OEAB to Bn; see Figure 7	1.0	3.2	5.1	1.0	6.2	ns	
		EBA to An, EAB to Bn; see Figure 7	1.0	3.4	5.1	1.0	6.2	ns	

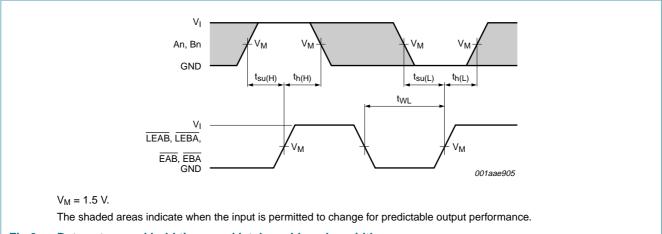
Octal latched transceiver with dual enable; 3-state

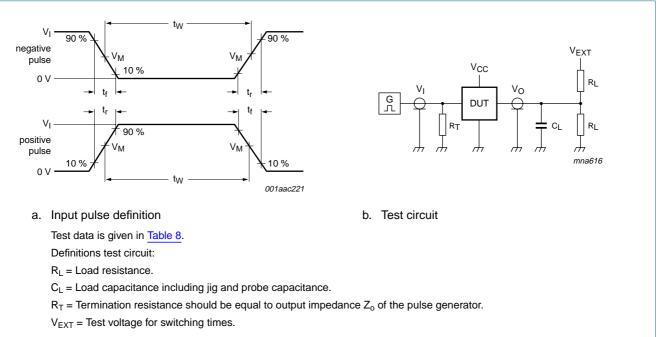
Symbol Parameter		Conditions		25 °C; V _{CC} = 5.0 V			-40 °C to +85 °C; V _{CC} = 5.0 V \pm 0.5 V		
			Min	Тур	Max	Min	Max		
t _{PZL}	OFF-state to LOW	$\overline{\text{OEBA}}$ to An, $\overline{\text{OEAB}}$ to Bn; see Figure 8	2.0	4.3	5.9	2.0	6.6	ns	
	propagation delay	EBA to An, EAB to Bn; see Figure 8	2.0	4.4	6.1	2.0	6.8	ns	
t _{PHZ}	t _{PHZ} HIGH to OFF-state propagation delay	$\overline{\text{OEBA}}$ to An, $\overline{\text{OEAB}}$ to Bn; see Figure 7	2.0	4.0	5.7	2.0	6.2	ns	
		EBA to An, EAB to Bn; see Figure 7	2.0	3.6	5.4	2.0	5.9	ns	
t _{PLZ}	PLZ LOW to OFF-state propagation delay	OEBA to An, OEAB to Bn; see Figure 8	1.0	3.0	4.6	1.0	5.0	ns	
		EBA to An, EAB to Bn; see Figure 8	1.0	3.0	4.6	1.0	5.0	ns	
t _{su(H)}	su(H) set-up time HIGH	An to $\overline{\text{LEAB}}$, Bn to $\overline{\text{LEBA}}$; see Figure 9	2.5	1.0	-	2.5	-	ns	
		An to EAB, Bn to EBA; see Figure 9	3.5	1.3	-	3.5	-	ns	
t _{su(L)}	set-up time LOW	An to LEAB, Bn to LEBA; see Figure 9	3.0	1.4	-	3.0	-	ns	
		An to EAB, Bn to EBA; see Figure 9	3.0	1.4	-	3.0	-	ns	
t _{h(H)}	hold time HIGH	LEAB to An, LEBA to Bn; see Figure 9	+0.5	-0.8	-	0.5	-	ns	
		EAB to An, EBA to Bn; see Figure 9	+0.5	-0.8	-	0.5	-	ns	
t _{h(L)}	hold time LOW	LEAB to An, LEBA to Bn; see Figure 9	+0.5	-0.6	-	0.5	-	ns	
		EAB to An, EBA to Bn; see Figure 9	+0.5	-0.6	-	0.5	-	ns	
t _{WL}	pulse width LOW	latch enable; see Figure 9	3.5	1.0	-	3.5	-	ns	


Table 7.Dynamic characteristics ... continuedGND = 0 V; for test circuit, see Figure 10.

11. Waveforms

74ABT543A


Octal latched transceiver with dual enable; 3-state

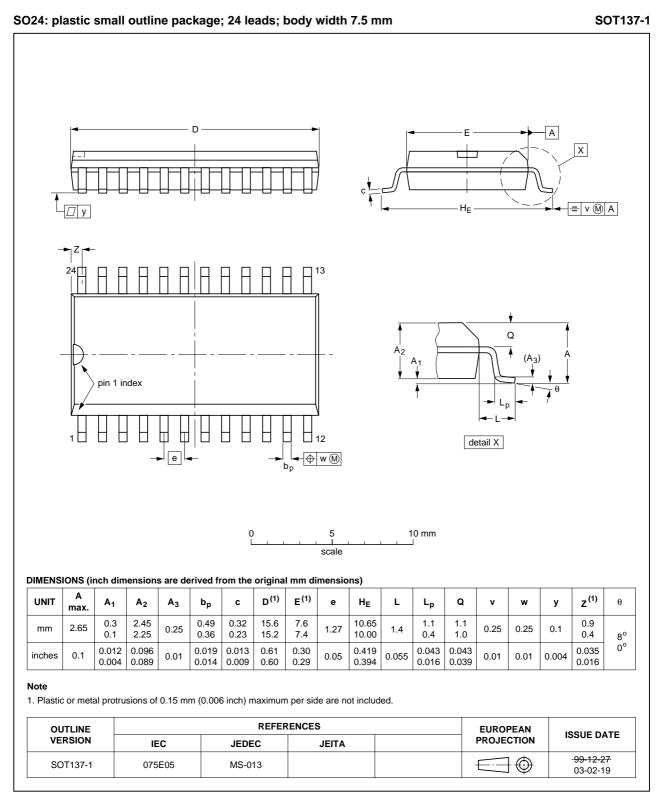

74ABT543A_3 Product data sheet

74ABT543A

Octal latched transceiver with dual enable; 3-state

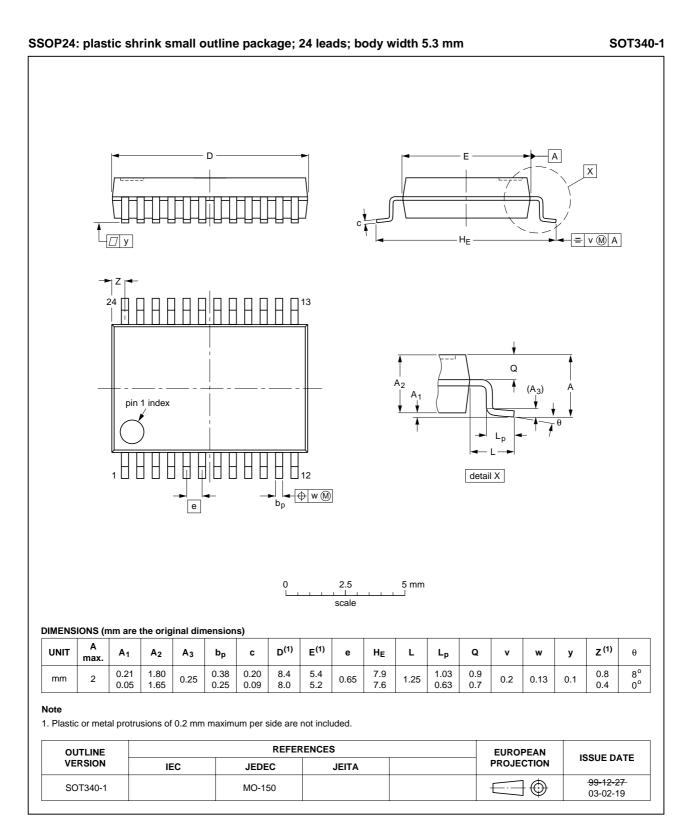
Fig 9. Data set-up and hold times and latch enable pulse width

Fig 10. Load circuitry for switching times

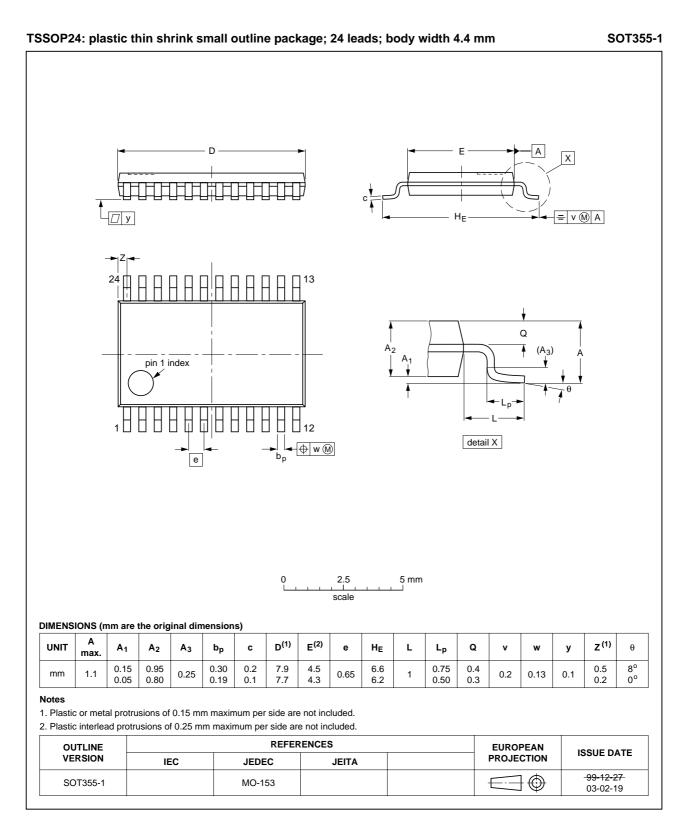

Table 8. Test data

Input				Load		V _{EXT}		
VI	f _l	tw	t _r , t _f	CL	RL	t _{PHL} , t _{PLH}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}
3.0 V	1 MHz	500 ns	\leq 2.5 ns	50 pF	500 Ω	open	open	7.0 V

74ABT543A


Octal latched transceiver with dual enable; 3-state

12. Package outline


Fig 11. Package outline SOT137-1 (SO24)

Octal latched transceiver with dual enable; 3-state

Fig 12. Package outline SOT340-1 (SSOP24)

Octal latched transceiver with dual enable; 3-state

Fig 13. Package outline SOT355-1 (TSSOP24)

Octal latched transceiver with dual enable; 3-state

13. Abbreviations

Acronym BiCMOS	Description Bipolar Complementary Metal-Oxide Semiconductor
BICMOS	Bipolar Complementary Metal-Oxide Semiconductor
Bioliloo	
DUT	Device Under Test
ESD	ElectroStatic Discharge
HBM	Human Body Model
MM	Machine Model

14. Revision history

Table 10. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes				
74ABT543A_3	20100126	Product data sheet	-	74ABT543A_2				
Modifications:	 The format of this data sheet has been redesigned to comply with the new identity guidelines of NXP Semiconductors. 							
	 Legal texts have been adapted to the new company name where appropriate. 							
 DIP 24 (SOT222-1) package removed from <u>Section 3 "Ordering information"</u> and 12 "Package outline" 								
74ABT543A_2	19980924	Product specification	-	74ABT543A_1				
74ABT543A_1	19950419	Product specification	-	-				

Octal latched transceiver with dual enable; 3-state

15. Legal information

15.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

15.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

16. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Octal latched transceiver with dual enable; 3-state

17. Contents

1	General description 1
2	Features 1
3	Ordering information 1
4	Functional diagram 2
5	Pinning information 3
5.1	Pinning 3
5.2	Pin description 3
6	Functional description 4
6.1	Function table 4
6.2	Description 4
7	Limiting values 5
8	Recommended operating conditions 5
9	Static characteristics 5
10	Dynamic characteristics 6
11	Waveforms 7
12	Package outline 10
13	Abbreviations 13
14	Revision history 13
15	Legal information 14
15.1	Data sheet status 14
15.2	Definitions 14
15.3	Disclaimers 14
15.4	Trademarks 14
16	Contact information 14
17	Contents 15

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2010.

All rights reserved.

founded by

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 26 January 2010 Document identifier: 74ABT543A_3