SRL10A-12

Miniature Surface Mount 10A Output, Switching POL Regulators

Electrical Specifications

Specifications typical @ +25°C, nominal input voltage & rated output current, unless otherwise noted. Specifications subject to change without notice.

Key Features:

- 10A Output Current
- Wide 9.0V 14V Input Range
- Efficiency to 95%
- EN 60950 Approved (UL)
- Miniature SMT Construction
- Short Circuit Protected
- Thermal Shutdown
- Remote On/Off Control
- Industry Standard Footprint

iiipat					
Parameter	Conditions	Min.	Тур.	Max.	Units
Input Voltage Range	Vout ≦ 4.5V	9.0	12.0	14.0	VDC
	Turn On Voltage Threshold		8.0		
Under Voltage Lockout, Power Up	Turn Off Voltage Threshold		7.7		VDC
	Lockout Hysteresis Voltage		0.3		
Maximum Input Current	IOUT = 100%, $VIn = 0$ to 14 VDC			7.0	Α
Off Input Current	Input Idle Current			10	mA
Turn On Delay Time			3.5		mS
Input Filter	Capacitive				
Input Reflected Ripple Current	See Note 1		200		mA P-P

Output

Output					
Parameter	Conditions	Min.	Тур.	Max.	Units
Output Voltage/Current	See Model Selection Guide				
Output Voltage Tolerance				±1.5	%
Line Regulation	VIN = Min to Max			±0.2	%
Load Regulation	IOUT = 0% to 100%			±0.5	%
Pipple & Noise (20 MHz)	See Note 2			50	mV P-P
Ripple & Noise (20 MHz)	See Note 2			20	mV RMS
Transient Recovery Time, See Note 3	50% Load Change			200	μ Sec
Temperature Coefficient				±0.03	%/°C
Short Circuit Protection	Continuous (H	Continuous (Hiccup Mode)			
Over Temperature Protection	See Note 4		120		°C
Overload Protection	See Note 5	15	17	20	Α
A 1					

General **Parameter** Conditions Max. **Units** Тур. Isolation Voltage Not Isolated Switching Frequency Fixed 300 kHz

Remote On/Off, See Note 6

Parameter	Conditions	Min.	Тур.	Max.	Units
Unit On	Logic High		Ор	en or VIN	
Unit Off	Logic Low	0.0		0.4	VDC
On/Off Current	Von/Voff = 0.0V			1	mA
Environmental					

E			nenta	ч
	VIII	11111	161112	ш

Parameter	Conditions	Min.	Тур.	Max.	Units
Operating Temperature Range	Ambient	-40	+25	+85	°C
Storage Temperature Range		-55		+125	°C
Cooling	Free Air Convection (S	See Dera	ting Cu	rves)	
Humidity	RH, Non-condensing			93	%
Physical					

Humidity	RH, Non-condensing	93	%
Physical			
Size	1.3 x 0.53 x 0.34	6 Inches (33.0 x 13.4	16 x 8.8 mm)
Weight		0.2	.99 Oz (8.5g)

Reliability Specifications

Parameter	Conditions	Min.	Тур.	Max.	Units
MTBF	MIL HDBK 217F, 25°C, Gnd Benign		980		kHours
Safety Standards	UL 60950, EN 60950				

MicroPower Direct

292 Page Street Suite D Stoughton, MA 02072 USA

T: (781) 344-8226 **F:** (781) 344-8481

E: sales@micropowerdirect.com W: www.micropowerdirect.com

Model Selection Guide

www.micropowerdirect.com

Martal		Input		Output		F(C) - 1	Capacitive	Fuse Rating		
Model Number	Voltage (VDC)	Currer	nt (mA)	Voltage	Current	Current	Efficiency (%, Typ)	Load	Slow-Blow	
Number	Range	Full-Load	No-Load	(VDC)	(A, Max)	(A, Min)	(70, Typ)	(µF Max)	(A)	
		992	40	0.75			82			
		1,163	50	1.20			86			
		1,404	50	1.50			89			
SRL10A-12-5.0	9.0 - 14.0	1,666	60	1.80	10.0	0.0	90	8.000	20	
ShL10A-12-3.0	9.0 - 14.0	1,823	60	2.00	10.0	0.0	0.0	91	8,000	20
		2,264	60	2.50				92		
		2,956	70	3.30			93			
		4,385	70	5.00			95			

Notes:

- 1. Measured over a bandwidth of 5 Hz to 20 MHz using a 1 μ H inductor.
- 2. Output ripple is measured at 20 MHz bandwidth using a 1.0 μ F ceramic capacitor and a 10 μ F tantalum capacitor connected in parallel as close to the output terminals as possible.
- Transient recovery is measured to within a 200 mV error band for a 50% load change.
- 4. These units include a non-latching over temperature protection circuit. If the temperature exceeds approximately 120°C at the monitored "hot spot", the unit will be shut down. When the temperature decreases, the unit will automatically restart. See page 3 for temperature measurement information.
- These units will provide up to 150% of rated current. In the event of an over current fault, the unit will go into hiccup mode until the fault is removed.
- Standard units feature an active high remote control input. See the note and diagram at right.
- These units do not include an internal fuse. It is recommended that an external slow-blow fuse be used with a rating as shown in the table above.

These units include an active high On/OFF control input. The unit is "ON" if the input to the control pin (pin 2) is high; or if the pin is left open (or floating). The signal level of the control input is referenced to ground. A recommended drive circuit for the control pin is shown at left. The resistors R1 & R2 have been added to help reduce possible false triggering of the control input due to leakage currents.

Units are available with an active low control input. With this input, the unit will remain off if the control input remains above 2.8 VDC. For more information on the active low option, contact the factory.

Typical Connection

Notes Fuse:

Input Filter:

SRL10A-12 regulators do not include an internal fuse. For safety and protection, a external slow-blow fuse should be placed in the input (+VIN) line. A 20A fuse is recommended.

The unit must be connected to a low AC impedance source, and to avoid loop stability issues, the source inductance should also be low. To significantly reduce ripple caused by the switching action of the POL, the **SRL10A-12** includes onboard filtering. However, adding input capacitors C1 and C2 will further reduce ripple currents (C1) and high frequency noise spikes (C2). These capacitors should be placed as close to the input pins as possible (see board layout at right). It is recommended that low ESR (<100 m Ω) and low ESL ceramic capacitors be used. Recommended values are:

Remote ON/OFF:

See note above

Output Trim:

See note on page 4

Remote Sense:

The remote sense helps regulate the output voltage at the point of load by minimizing the effects of distribution losses. The voltage between the sense pin (Pin 3) and the point of load should not exceed 500 mV. When using the remote sense function, the output voltage level may rise. Care must be taken not to exceed the maximum rated output power of the regulator. When not in use, the remote sense pin should be tied to the output pin of the regulator.

Output Filter:

Output filtering is not required, but may be used to further reduce output ripple & noise; or to adjust the transient response time of the unit. Care must be taken not to exceed 8,000 μ F, the maximum value of output capacitance the unit is rated for. The values given in the connection diagram are typical for light filtering.

C 1	C ₂
33 μF to 250 μF	0.01 μF

These switching regulators may be used in a wide variety of thermal environments, but must be properly cooled to ensure long reliable operation. The derating curves shown above are approximations of the ambient temperature and airflow required to maintain the switching regulator temperature below its maximum rating. Airflow should move across the unit, as shown above. Proper cooling can be verified by measuring the temperature at the reference point (as shown at left). The thermocouple should be mounted approximately 0.5 in. off the unit board. The temperature at this location should not exceed 120°C.

Output Voltage Trim

SRL10A-12-5.0 +Vout Sense 7 Trim 6 RTrim Common

www.micropowerdirect.com

The output voltage level of the **SRL10A-12** series is adjustable over a wide range by the simple addition of an external resistor. This trim resistor is connected between the circuit common and the trim input, as shown in the diagram at left.

The required resistor value for various output levels is given in the table above. To calculate the correct value for a different output level, the formula is:

$$R_{TRIM} = \frac{10,500}{V_{OUT} - 0.75} - 1,000$$

Where: RTRIM = The external trim resistor VOUT = The desired output voltage

If a trim resistor is not connected, the output is 0.75 VDC.

SRL10A-12-5.0				
Vout (VDC)	RTRIM ($\mathbf{k}\Omega$)			
0.75	Open			
1.20	22.33			
1.50	13.00			
1.80	9.00			
2.00	7.40			
2.50	5.00			
3.30	3.12			
5.00	1.47			

Suggested Board Layout

This diagram illustrates a simple board layout for use with the **SRL10A-12** series. As recommended, external components are placed as close to the unit as possible. To help shield external circuitry, the ground plane has been extended under the unit. Any signal traces should not be routed underneath the unit (unless they are on a layer under the ground plane) to avoid unwanted noise interference.

Pin Connections

Pin	Description	Pin	Description
1	+V Input	5	+V Output
2	Sense	6	Trim
4	Common	7	Sense

Suggested Solder Reflow Profile

Mechanical Dimensions

Notes:

- All dimensions are typical in inches (mm)
- Tolerance $x.xx = \pm 0.02 \ (\pm 0.50)$

