


### Typical Applications

The HMC562 wideband driver is ideal for:

- Military & Space
- Test Instrumentation
- Fiber Optics

### **Functional Diagram**



#### **Features**

P1dB Output Power: +18 dBm

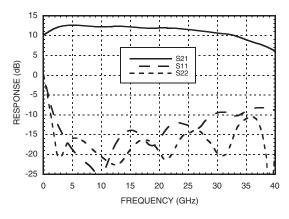
Gain: 12.5 dB

Output IP3: +27 dBm

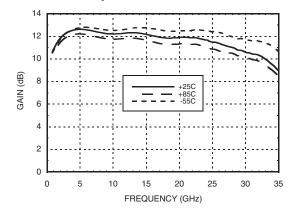
Supply Voltage: +8V @ 80 mA 50 Ohm Matched Input/Output Die Size: 3.12 x 1.42 x 0.1 mm

#### **General Description**

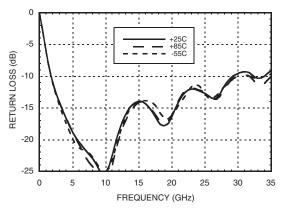
The HMC562 is a GaAs MMIC PHEMT Distributed Driver Amplifier die which operates between 2 and 35 GHz. The amplifier provides 12.5 dB of gain, +19 dBm output IP3 and +12 dBm of output power at 1 dB gain compression while requiring 80 mA from a +8V supply. The HMC562 is ideal for EW, ECM and radar driver amplifier applications. The HMC562 amplifier I/O's are DC blocked and internally matched to 50 Ohms facilitating integration into Multi-Chip-Modules (MCMs). All data is taken with the chip connected via two 0.075mm (3 mil) ribbon bonds of minimal length 0.31mm (12 mils).


# Electrical Specifications, $T_{A} = +25^{\circ}$ C, Vdd = +8V, Idd = 80 mA\*

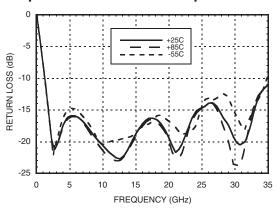
| Parameter                                        | Min.       | Тур. | Max.        | Min. | Тур.  | Max.        | Min. | Тур. | Max. | Units  |
|--------------------------------------------------|------------|------|-------------|------|-------|-------------|------|------|------|--------|
| Frequency Range                                  | 2.0 - 15.0 |      | 15.0 - 27.0 |      |       | 27.0 - 35.0 |      |      | GHz  |        |
| Gain                                             | 9.5        | 12.5 |             | 8.5  | 12    |             | 7    | 10   |      | dB     |
| Gain Flatness                                    |            | ±0.4 |             |      | ±0.35 |             |      | ±1.3 |      | dB     |
| Gain Variation Over Temperature                  |            | 0.01 | 0.02        |      | 0.01  | 0.02        |      | 0.02 | 0.03 | dB/ °C |
| Input Return Loss                                |            | 14   |             |      | 13    |             |      | 10   |      | dB     |
| Output Return Loss                               |            | 16   |             |      | 15    |             |      | 12   |      | dB     |
| Output Power for 1 dB Compression (P1dB)         | 15         | 18   |             | 14   | 17    |             | 10   | 14   |      | dBm    |
| Saturated Output Power (Psat)                    |            | 21.5 |             |      | 20    |             |      | 16   |      | dBm    |
| Output Third Order Intercept (IP3)               |            | 27   |             |      | 24    |             |      | 22   |      | dBm    |
| Noise Figure                                     |            | 3    |             |      | 3.5   |             |      | 5    |      | dB     |
| Supply Current (Idd) (Vdd= 8V, Vgg = -0.8V Typ.) |            | 80   | 100         |      | 80    | 100         |      | 80   | 100  | mA     |


<sup>\*</sup> Adjust Vgg between -2 to 0V to achieve Idd= 80 mA typical.

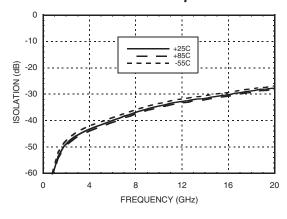



#### Gain & Return Loss

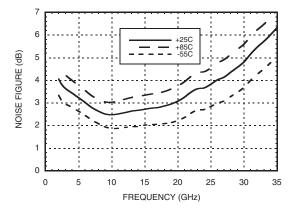



### Gain vs. Temperature



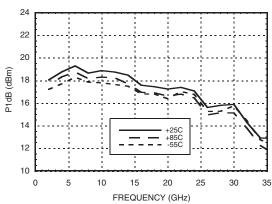

#### Input Return Loss vs. Temperature



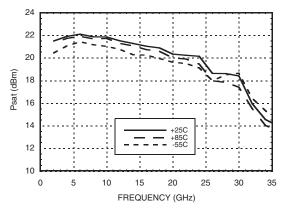

### Output Return Loss vs. Temperature



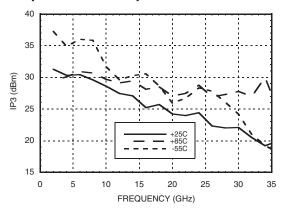
### Reverse Isolation vs. Temperature



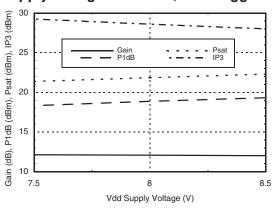

#### Noise Figure vs. Temperature



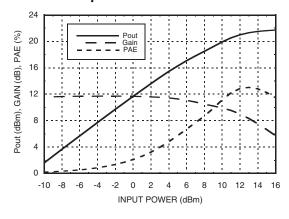




### P1dB vs. Temperature

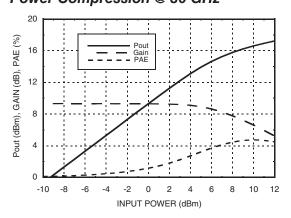



### Psat vs. Temperature




#### Output IP3 vs. Temperature




Gain, Power & Output IP3 vs. Supply Voltage @ 10 GHz, Fixed Vgg



#### **Power Compression @ 10 GHz**



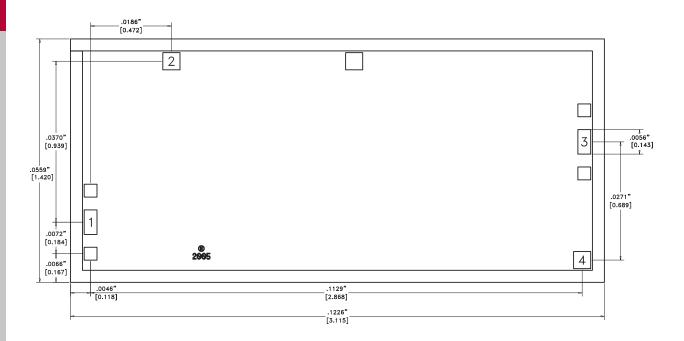
### Power Compression @ 30 GHz





## **Absolute Maximum Ratings**

| Drain Bias Voltage (Vdd)                                     | +10 Vdc        |
|--------------------------------------------------------------|----------------|
| Gate Bias Voltage (Vgg)                                      | -2.0 to 0 Vdc  |
| RF Input Power (RFIN)(Vdd = +10 Vdc)                         | +23 dBm        |
| Channel Temperature                                          | 175 °C         |
| Continuous Pdiss (T= 85 °C)<br>(derate 26 mW/°C above 85 °C) | 2.3 W          |
| Thermal Resistance (channel to die bottom)                   | 39 °C/W        |
| Storage Temperature                                          | -65 to +150 °C |
| Operating Temperature                                        | -55 to +85 °C  |
| ESD Sensitivity (HBM)                                        | Class 1A       |
|                                                              |                |


## Typical Supply Current vs. Vdd

| Vdd (V) | ldd (mA) |
|---------|----------|
| +7.5    | 79       |
| +8      | 80       |
| +8.5    | 81       |





### **Outline Drawing**



## Die Packaging Information [1]

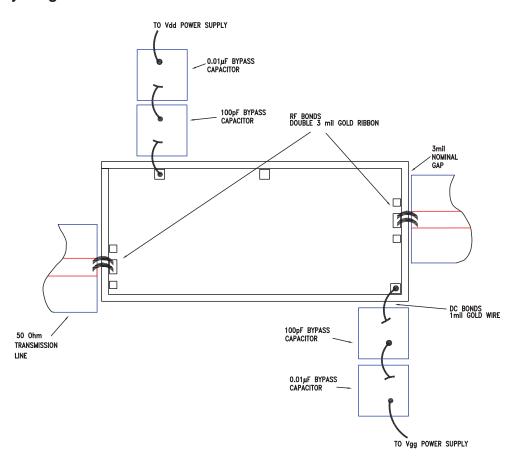
| Standard | Alternate |
|----------|-----------|
| GP-2     | [2]       |

[1] Refer to the "Packaging Information" section for die packaging dimensions.

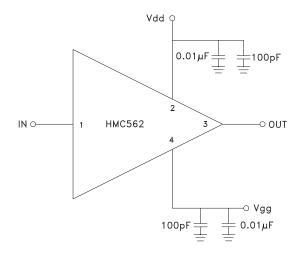
[2] For alternate packaging information contact Hittite Microwave Corporation.

#### NOTES

- 1. ALL DIMENSIONS IN INCHES [MILLIMETERS]
- 2. DIE THICKNESS IS 0.004 (0.100)
- 3. TYPICAL BOND PAD IS 0.004 (0.100) SQUARE
- 4. BOND PAD METALIZATION: GOLD
- 5. BACKSIDE METALLIZATION: GOLD
- 6. BACKSIDE METAL IS GROUND
- 7. NO CONNECTION REQUIRED FOR UNLABELED BOND PADS
- 8. OVERALL DIE SIZE IS ±.002




## **Pad Descriptions**


| Pad Number | Function | Description                                                                                                                                      | Interface Schematic                         |
|------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| 1          | IN       | This pad is AC coupled and matched to 50 Ohms                                                                                                    | IN 0                                        |
| 2          | Vdd      | Power supply voltage for amplifier.<br>External bypass capacitors are required.                                                                  | oVdd<br>——————————————————————————————————— |
| 3          | OUT      | This pad is AC coupled and matched to 50 Ohms                                                                                                    | —   — ○ оит                                 |
| 4          | Vgg      | Gate control for amplifier. External<br>bypass capacitors are required.<br>Please follow "MMIC Amplifier Biasing Procedure"<br>application note. | Vgg O                                       |
| Die Bottom | GND      | Die bottom must be connected to RF/DC ground.                                                                                                    | GND<br>=                                    |



### **Assembly Diagram**



## **Application Circuit**





### Mounting & Bonding Techniques for Millimeterwave GaAs MMICs

The die should be attached directly to the ground plane eutectically or with conductive epoxy (see HMC general Handling, Mounting, Bonding Note).

50 Ohm Microstrip transmission lines on 0.127mm (5 mil) thick alumina thin film substrates are recommended for bringing RF to and from the chip (Figure 1). If 0.254mm (10 mil) thick alumina thin film substrates must be used, the die should be raised 0.150mm (6 mils) so that the surface of the die is coplanar with the surface of the substrate. One way to accomplish this is to attach the 0.102mm (4 mil) thick die to a 0.150mm (6 mil) thick molybdenum heat spreader (moly-tab) which is then attached to the ground plane (Figure 2).

Microstrip substrates should be placed as close to the die as possible in order to minimize bond wire length. Typical die-to-substrate spacing is 0.076mm to 0.152 mm (3 to 6 mils).

### **Handling Precautions**

Follow these precautions to avoid permanent damage.

**Storage:** All bare die are placed in either Waffle or Gel based ESD protective containers, and then sealed in an ESD protective bag for shipment. Once the sealed ESD protective bag has been opened, all die should be stored in a dry nitrogen environment.

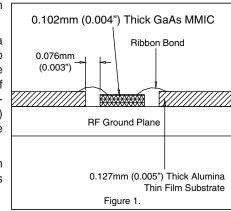
**Cleanliness:** Handle the chips in a clean environment. DO NOT attempt to clean the chip using liquid cleaning systems.

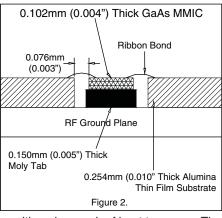
Static Sensitivity: Follow ESD precautions to protect against ESD strikes.

**Transients:** Suppress instrument and bias supply transients while bias is applied. Use shielded signal and bias cables to minimize inductive pick-up.

pick-up. Figure 2. **General Handling:** Handle the chip along the edges with a vacuum collet or with a sharp pair of bent tweezers. The surface of the chip has fragile air bridges and should not be touched with vacuum collet, tweezers, or fingers.

#### Mounting


The chip is back-metallized and can be die mounted with AuSn eutectic preforms or with electrically conductive epoxy. The mounting surface should be clean and flat.


Eutectic Die Attach: A 80/20 gold tin preform is recommended with a work surface temperature of 255 deg. C and a tool temperature of 265 deg. C. When hot 90/10 nitrogen/hydrogen gas is applied, tool tip temperature should be 290 deg. C. DO NOT expose the chip to a temperature greater than 320 deg. C for more than 20 seconds. No more than 3 seconds of scrubbing should be required for attachment.

Epoxy Die Attach: Apply a minimum amount of epoxy to the mounting surface so that a thin epoxy fillet is observed around the perimeter of the chip once it is placed into position. Cure epoxy per the manufacturer's schedule.

#### Wire Bonding

RF bonds made with 0.003" x 0.0005" ribbon are recommended. These bonds should be thermosonically bonded with a force of 40-60 grams. DC bonds of 0.001" (0.025 mm) diameter, thermosonically bonded, are recommended. Ball bonds should be made with a force of 40-50 grams and wedge bonds at 18-22 grams. All bonds should be made with a nominal stage temperature of 150 °C. A minimum amount of ultrasonic energy should be applied to achieve reliable bonds. All bonds should be as short as possible, less than 12 mils (0.31 mm).



