

ROHS COMPLIANT METAL GATE RF SILICON FET

MECHANICAL DATA

DA

PIN 2 PIN 1 SOURCE DRAIN SOURCE PIN 4 PIN 3 **GATE**

DIM	mm	Tol.	Inches	Tol.
Α	24.76	0.13	0.975	0.005
В	18.42	0.13	0.725	0.005
С	45°	5°	45°	5°
D	6.35	0.13	0.25	0.005
E	3.17	0.13	0.125 DIA	0.005
F	5.71	0.13	0.225	0.005
G	9.52	0.13	0.375	0.005
Н	6.60	REF	0.260	REF
1	0.13	0.02	0.005	0.001
J	4.32	0.13	0.170	0.005
K	2.54	0.13	0.100	0.005
М	20.32	0.25	0.800	0.010

GOLD METALLISED MULTI-PURPOSE SILICON DMOS RF FET 20W - 50V - 175MHzSINGLE ENDED

FEATURES

- SIMPLIFIED AMPLIFIER DESIGN
- SUITABLE FOR BROAD BAND APPLICATIONS
- LOW C_{rss}
- SIMPLE BIAS CIRCUITS
- LOW NOISE
- HIGH GAIN 16 dB MINIMUM

APPLICATIONS

 HF/VHF COMMUNICATIONS from 1 MHz to 175 MHz

ABSOLUTE MAXIMUM RATINGS (T_{case} = 25°C unless otherwise stated)

$\overline{P_D}$	Power Dissipation	50W
BV _{DSS}	Drain – Source Breakdown Voltage	125V
BV_{GSS}	Gate – Source Breakdown Voltage	±20V
I _{D(sat)}	Drain Current	3A
T _{stg}	Storage Temperature	−65 to 150°C
Tj	Maximum Operating Junction Temperature	200°C

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Website: http://www.semelab.co.uk

ELECTRICAL CHARACTERISTICS (T_{case} = 25°C unless otherwise stated)

Parameter		Tes	t Conditions	Min.	Тур.	Max.	Unit
B\/= cc	Drain-Source	V _{GS} = 0	I _D = 100mA	125			V
BV _{DSS}	Breakdown Voltage	VGS = 0	ID = 100IIIX	125			V
1	Zero Gate Voltage	V - 50\/	/			1	mA
IDSS	Drain Current	$V_{DS} = 50V$	$V_{GS} = 0$			ı	IIIA
I _{GSS}	Gate Leakage Current	V _{GS} = 20V	V _{DS} = 0			1	μΑ
V _{GS(th)}	Gate Threshold Voltage*	I _D = 10mA	$V_{DS} = V_{GS}$	1		7	V
9 _{fs}	Forward Transconductance*	V _{DS} = 10V	I _D = 0.5A	0.8			S
G _{PS}	Common Source Power Gain	P _O = 20W		16			dB
η	Drain Efficiency	V _{DS} = 50V	$I_{DQ} = 0.1A$	50			%
VSWR	Load Mismatch Tolerance	f = 175MH	<u>7</u>	20:1			_
C _{iss}	Input Capacitance	$V_{DS} = 50V$	$V_{GS} = -5V$ $f = 1MHz$			60	pF
C _{oss}	Output Capacitance	$V_{DS} = 50V$	$V_{GS} = 0$ $f = 1MHz$			25	pF
C _{rss}	Reverse Transfer Capacitance	$V_{DS} = 50V$	$V_{GS} = 0$ f = 1MHz			1.5	pF

^{*} Pulse Test: Pulse Duration = 300 μs , Duty Cycle \leq 2%

HAZARDOUS MATERIAL WARNING

The ceramic portion of the device between leads and metal flange is beryllium oxide. Beryllium oxide dust is highly toxic and care must be taken during handling and mounting to avoid damage to this area.

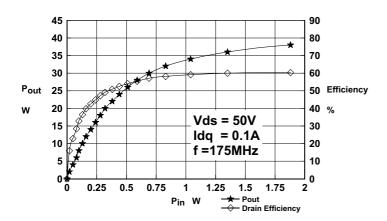
THESE DEVICES MUST NEVER BE THROWN AWAY WITH GENERAL INDUSTRIAL OR DOMESTIC WASTE.

THERMAL DATA

R _{THj-case}	Thermal Resistance Junction – Case	Max. 3.5°C / W
-----------------------	------------------------------------	----------------

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Website: http://www.semelab.co.uk


E-mail: sales@semelab.co.uk

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612.

Document Number 3142

Issue 2

45 21 20 40 19 35 30 18 Vds = 50VPout 17 Gain 25 Idq = 0.1A20 16 dB w f = 175MHz15 15 10 14 13 5 12 0.25 0.5 0.75 1.25 1.75 1.5 Pin W → Pout → Gain

Figure 1 Power Output and Efficiency vs. Power input

Figure 2 Power Output and Gain vs Power Input

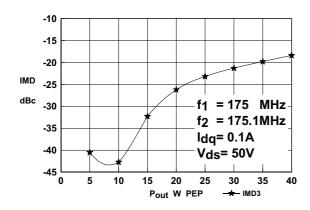


Figure 3 IMD3 vs Power Output

OPTIMUM SOURCE AND LOAD IMPEDANCE

Frequency MHz	Z_{S} Ω	Z_{L}		
175	9.5 + j14.1	12.3 + j10.2		

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

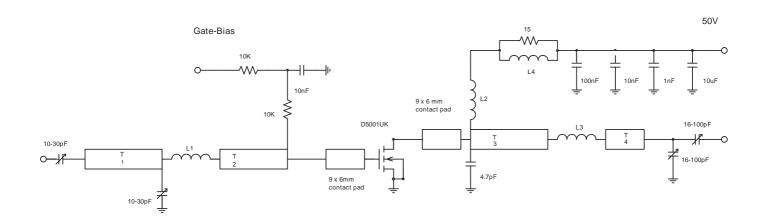
E-mail: sales@semelab.co.uk

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612.

Website: http://www.semelab.co.uk

Typical S Parameters

! Vds=50V Idq=0.1A # MHZ S MA R 50


# 1011 12	3 WA IX 30					
!Freq	S11	S21		S12		S22
!Mhz	mag ang	mag	ang	mag	ang	mag ang
30	0.85 -108.7	9.765	172.5	0.018	69.9	0.726 -69.2
40	0.846 -109.8	9.588	163.6	0.019	65.8	0.718 -70.1
50	0.84 -111.2	9.473	154.9	0.019	60.2	0.709 -71.2
60	0.837 -113.1	8.991	146.1	0.02	55.2	0.699 -72.6
70	0.835 -116	8.521	139.2	0.021	50.7	0.689 -74.4
80	0.833 -118	8.104	134.4	0.022	47.6	0.678 -78.1
90	0.831 -120 0.829 -123.3	7.662 7.304	127.9 122.9	0.023	44.6 42.7	0.673 -80.6 0.671 -83.6
110	0.828 -125.2	6.991	117.8	0.023	40.5	0.671 -85.3
120	0.825 -127.4	6.732	114.6	0.023	40.2	0.669 -87.9
130	0.823 -130	6.406	109.6	0.023	39.8	0.665 -88.6
140	0.82 -131.9	6.155	105	0.022	39.9	0.664 -89.6
150	0.816 -135	5.868	100.7	0.021	40.6	0.663 -91.4
160	0.81 -137.6	5.644	96.3	0.021	41.9	0.664 -92.6
170	0.807 -139.8	5.305	91.2	0.02	44.2	0.665 -94.2
180	0.803 -142.8	4.989	87.4	0.019	48	0.665 -96.8
190	0.804 -144.7	4.656	83.5	0.019	52	0.667 -98.6
200	0.806 -147.3	4.402	81.1	0.019	57.2	0.671 -101.2
210	0.803 -149.2	4.09	79.8	0.019	62.2	0.672 -103
220	0.808 -151.5	3.989	78.7	0.02	68.2	0.671 -103.5
230	0.802 -153.1	3.859	76.5	0.02	71.6	0.677 -105.6
240	0.807 -155.2	3.717	74	0.021	76.1	0.685 -107.9
250 260	0.811 -156.7 0.812 -158.9	3.57 3.435	71.3 68.4	0.022	79.4 84.1	0.687 -109.9 0.698 -111.9
270	0.814 -160.4	3.336	65.9	0.025	87.4	0.706 -113.7
280	0.818 -161.7	3.227	63.2	0.023	91.3	0.716 -116.2
290	0.823 -164	3.1	61.1	0.029	95.1	0.722 -119.2
300	0.828 -165.4	2.986	58.9	0.032	97	0.724 -120
310	0.828 -166.3	2.935	57.3	0.035	98.2	0.726 -122.1
320	0.829 -168.2	2.879	54.3	0.038	97.5	0.735 -123.7
330	0.832 -169.5	2.71	50	0.04	96.9	0.743 -125.4
340	0.835 -170.9	2.536	46.9	0.042	97.3	0.747 -127.4
350	0.838 -171.9	2.395	45.7	0.044	97.7	0.756 -130
360	0.843 -173.6	2.266	44	0.045	98.3	0.761 -130.8
370	0.843 -174.9	2.117	43.2	0.048	100.3	0.767 -133.3 0.772 -134.4
380 390	0.845 -175.5 0.852 -176.8	2.027 1.986	42.7 43.3	0.051	100.7 101.6	0.772 -134.4
400	0.857 -178.2	1.969	43.3 42.8	0.059	101.6	0.788 -138.4
410	0.862 -178.9	1.938	41.7	0.062	102.6	0.793 -139.8
420	0.862 179.2	1.91	39.4	0.066	99.6	0.797 -141.6
430	0.861 178.7	1.895	37.1	0.068	98.7	0.801 -143.8
440	0.873 177.3	1.844	33.7	0.07	97.2	0.809 -145.3
450	0.868 176.3	1.73	30.5	0.072	96.9	0.814 -147
460	0.871 174.9	1.644	27.8	0.074	96.8	0.822 -148
470	0.875 175.2	1.558	26.8	0.077	97.3	0.821 -149.6
480	0.875 174.4	1.485	26.3	0.08	96.9	0.83 -150.6
490	0.878 172.8	1.394	25.7	0.083	97.1	0.829 -152.2
500	0.882 171.6	1.332	26.2	0.086	96.5	0.841 -153.6
						-

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

 Semelab plc.
 Telephone +44(0)1455 556565.
 Fax +44(0)1455 552612.
 Document Number 3142

 E-mail: sales@semelab.co.uk
 Website: http://www.semelab.co.uk
 Document Number 3142

D5001UK 175MHz TEST FIXTURE

Substrate 1.6mm PTFE/glass, Er = 2.5

All microstrip lines W= 4.4mm

T1 10mm

T2 13mm

T3 12mm

T4 4mm

L1 1.5 turns 22swg enamelled copper wire, 6mm id.

L2 10 turns 19swg enamelled copper wire, 6mm id.

L3 1.5 turns 22swg enamelled copper wire, 6mm id.

L4 13.5 turns 19swg enamelled copper wire on Siemens

B64920A618x830 ferrite core

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

E-mail: sales@semelab.co.uk

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612. Website: http://www.semelab.co.uk