Board 4s SKYPER 32 R

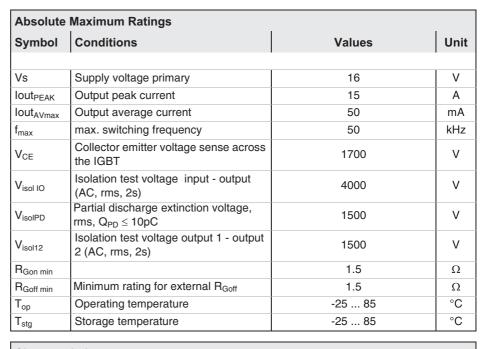
Adaptor board

Board 4s SKYPER 32 R

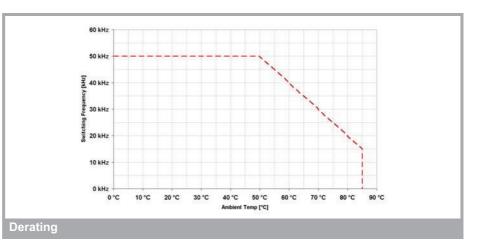
Preliminary Data

Features

- · Two output channels
- Failure management


Typical Applications*

- Adaptor board for SKYPER 32 IGBT drivers in bridge circuits for industrial applications
- DC bus up to 1200V


Footnotes

All characteristics listed in the data sheet are guilty for the use with SKYPER 32 Please consider the derating of the ambient temperature

Please refer to the datasheet of SKYPER 32 for further information

Characteristics Symbol Conditions Unit min. typ. max. Vs Supply voltage primary side 14.4 15 15.6 V Vi input signal voltage on / off 15/0 V VIT+ Input treshold voltage HIGH 12.3 V VIT-Input threshold voltage (LOW) 4.6 V V_{G(on)} Turn on gate voltage output 15 V V_{G(off)} Turn off gate voltage output -7 V Input-output turn-on propagation time 1.1 μs t_{d(on)IO} Input-output turn-off propagation time 1.1 t_{d(off)IO} us

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

© by SEMIKRON

Adaptor Board 4s SKYPER[®] 32 R

Technical Explanations

Revision 01

 This Technical Explanation is valid for the following parts:

 part number
 type
 date code (YYWW)

 L6100161
 Board 4s SKYPER[®] 32 R
 ≥ 1004

 Related documents:

 title

 Technical Explanations SKYPER[®] 32 R

 Prepared by: Johannes Krapp

Content

3
3
3
4
5
6
7
7
7
8
8
8 8
9
9 10
12

Please note:

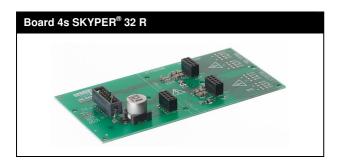
All values in this technical explanation are typical values. Typical values are the average values expected in large quantities and are provided for information purposes only. These values can and do vary in different applications. All operating parameters should be validated by user's technical experts for each application.

Application and Handling Instructions

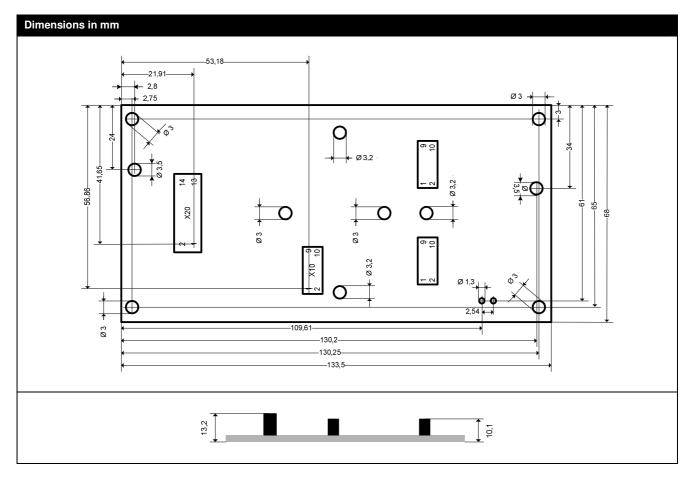
- Please provide for static discharge protection during handling. As long as the hybrid driver is not completely assembled, the input terminals have to be short-circuited. Persons working with devices have to wear a grounded bracelet. Any synthetic floor coverings must not be statically chargeable. Even during transportation the input terminals have to be short-circuited using, for example, conductive rubber. Worktables have to be grounded. The same safety requirements apply to MOSFET- and IGBT-modules.
- Any parasitic inductances within the DC-link have to be minimised. Over-voltages may be absorbed by C- or RCDsnubber networks between main terminals for PLUS and MINUS of the power module.
- When first operating a newly developed circuit, SEMIKRON recommends to apply low collector voltage and load current in the beginning and to increase these values gradually, observing the turn-off behaviour of the free-wheeling diode and the turn-off voltage spikes generated across the IGBT. An oscillographic control will be necessary. Additionally, the case temperature of the module has to be monitored. When the circuit works correctly under rated operation conditions, short-circuit testing may be done, starting again with low collector voltage.
- It is important to feed any errors back to the control circuit and to switch off the device immediately in failure events.
 Repeated turn-on of the IGBT into a short circuit with a high frequency may destroy the device.
- The inputs of the hybrid driver are sensitive to over-voltage. Voltages higher than V_S +0,3V or below -0,3V may destroy
 these inputs. Therefore, control signal over-voltages exceeding the above values have to be avoided.
- The connecting leads between hybrid driver and the power module should be as short as possible (max. 20cm), the driver leads should be twisted.

Further application support

Latest information is available at http://www.semikron.com. For design support please read the SEMIKRON Application Manual Power Modules available at http://www.semikron.com.

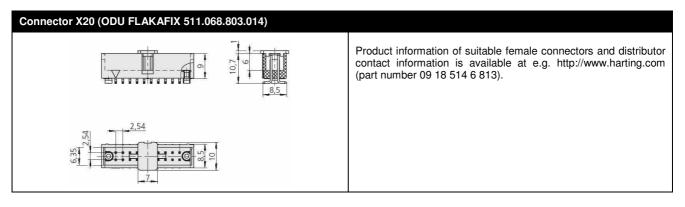

General Description

The Board 4s SKYPER[®] 32 R is an adaptor board for the IGBT module SEMiX[®] 4s (spring contact version). The board can be customized allowing adaptation and optimization to the used SEMiX[®] Module.


The switching characteristic of the IGBT can be influenced through user settings, e.g. changing turn-on and turn-off speed by variation of R_{Gon} and R_{Goff} . Furthermore, it is possible to adjust the monitoring level and blanking time for the DSCP (see Technical Explanations SKYPER[®] 32 R).

Please note:

This technical explanation is based on the Technical Explanations for SKYPER[®] 32 R. Please read the Technical Explanations SKYPER[®] 32 R before using the Adaptor Board.


Dimensions

Component Placement Layout

Adaptor Board				
7 2	\bigcirc	C C C C C C C C C C C C C C C C C C C	30 R259 R256 R257 R257 R257 R257 R254 R254 R254 R254 R254 R254 R254 R254 R254 R254 R254 R254 R254 R254 R255	44 O O
x 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =	й о к п п п т т т т т т т т т т т т т т т		28 0 27 0 27 0 20 27 0 20 20 20 20 20 20 20 20 20 20 20 20 2	42 O
1928 V234 1978 1978 1978	8203	\bigcirc	V212 T1ZA ZT2W R211 202H R291	
911A 8114 8104	\bigcirc	V113 11 CTTH 60TH	V112 2114 2014	1111 R111 R101
1918				BOT
00		\bigcirc		

PIN Array

PIN	Signal	Function	Specification
X20:01	reserved		
X20:02	IF_HB_BOT	Switching signal input (BOTTOM switch)	Digital 15 V; 10 kOhm impedance; LOW = BOT switch off; HIGH = BOT switch on
X20:03	IF_nERROR_OUT	ERROR output	LOW = NO ERROR; open collector output; max. 30V / 15mA (external pull up resistor necessary)
X20:04	IF_HB_TOP	Switching signal input (TOP switch)	Digital 15 V; 10 kOhm impedance; LOW = TOP switch off; HIGH = TOP switch on
X20:05	reserved		
X20:06	reserved		
X20:07	reserved		
X20:08	IF_PWR_15P	Drive power supply	Stabilised +15V ±4%
X20:09	IF_PWR_15P	Drive power supply	Stabilised +15V ±4%
X20:10	IF_PWR_GND	GND for power supply and GND for digital signals	
X20:11	IF_PWR_GND	GND for power supply and GND for digital signals	
X20:12	reserved		
X20:13	reserved		
X20:14	reserved		

Please note:

The feature PRIM_ERROR_IN of the driver core is not available at the interface X20.

Setting Dynamic Short Circuit Protection

Designation	Pattern Name	Setting	
R160	1206	R _{CE} Factory setting: not equipped	TOP
C150	1206	C _{CE} Factory setting: not equipped	TOP
R260	1206	R _{CE} Factory setting: not equipped	BOT
C250	1206	C _{CE} Factory setting: not equipped	BOT

Collector Series Resistance

Designation	Pattern Name	Setting	
R150	MiniMELF	R _{VCE} * Factory setting: not equipped	TOP
R250	MiniMELF	R _{VCE} * Factory setting: not equipped	вот

Adaptation Gate Resistors

Designation	Pattern Name	Setting	
R151, R152, R153, R154 (parallel connected)	MiniMELF	R _{Gon} Factory setting: not equipped	TOP
R155, R156, R157, R158 (parallel connected)	MiniMELF	R _{Goff} Factory setting: not equipped	TOP
R251, R252, R253, R254 (parallel connected)	MiniMELF	R _{Gon} Factory setting: not equipped	BOT
R255, R256, R257, R258 (parallel connected)	MiniMELF	R _{Goff} Factory setting: not equipped	BOT

Adaptation Decoupling Gate Resistors

For details to the decoupling gate resistors and recommended values, see Modules Explanations and Data Sheets SEMIX[®].

Designation	Pattern Name	Setting	
R101	MELF	R _{G1} Factory setting: not equipped	TOP
R102	MELF	R _{G2} Factory setting: not equipped	TOP
R103	MELF	R _{G3} Factory setting: not equipped	TOP
R104	MELF	R _{G4} Factory setting: not equipped	TOP
R201	MELF	R _{G1} Factory setting: not equipped	BOT
R202	MELF	R _{G2} Factory setting: not equipped	BOT
R203	MELF	R _{G3} Factory setting: not equipped	BOT
R204	MELF	R _{G4} Factory setting: not equipped	BOT

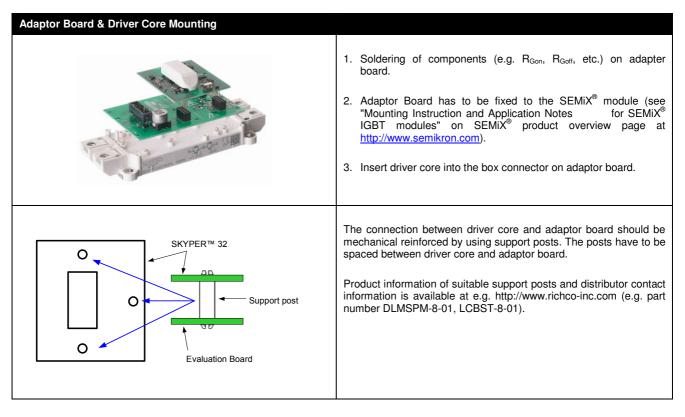
Boost Capacitors

Designation	Pattern Name	Setting	
C151	1210	C _{boost8N} Factory setting: 4,7µF/16V *	TOP
C152	1210	C _{boost15P} Factory setting: 2,2µF/25V *	TOP
C251	1210	C _{boost8N} Factory setting: 4,7µF/16V *	BOT
C252	1210	C _{boost15P} Factory setting: 2,2µF/25V *	BOT

Temperature Signal

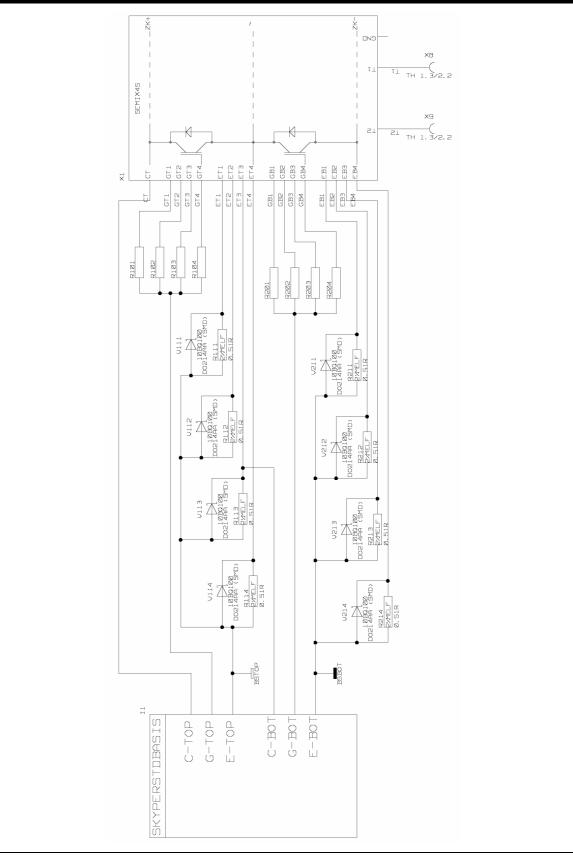
The temperature sensor inside the SEMiX[®] module is directly connected to contacting points T1 and T2. For details to the temperature sensor, see Modules Explanations SEMiX[®].

Safety Warnings:


仵

The contacting points T1 and T2 are not electrical isolated. Due to high voltage that may be present at the contacting points T1 and T2, some care must be taken in order to avoid accident. There is no cover or potential isolation that protect the high voltage sections / wires from accidental human contact.

8


Mounting Notes

The electrical connections between adaptor board and SEMiX[®] are realised via spring contacts integrated in SEMiX[®] power modules and via landing pads on the bottom side of the adaptor board.

Schematics

Schematic II Adaptor Board C-TOP I OI dg, 8 ЦOГ P.40 BY203/205 SMD MP.44 852 Z I.D.K ü J150 SMD 40, 8 MP,43 dØ, 8 d**Ø**, 8 Ě ZEC ω BSTOP 122 ĽΜ R157 R156 R154 R155 R158 R257 R258 R254 R255 8225 R253 C150 C250 3160 R260 R150 3250 52 121 C254 e. 20F dØ, 8 m æ m şä a ۲¥ 10, B B SHD ΩμS Ωu 152 20F SAD **TEXHW** 2 db/s 5 db/s 1 ĽΜU dØ, B SMD -012B dØ, 8 MP24 -Eg dØ, 8 ΣΩ 2dM TENSIT GMS ΩLS ¥, Deam Deam Ĭ. Q, B 0 MD/DR MP30 - R , UMS μ ×122 X200 → 𝗤 𝗝 𝑘 𝑘 𝑘 𝑘 𝑘 𝑘 𝑘 - N - 4 D D - 0 - 0 - 0 alduob\qSi AZ.54 IQp\double SMD aiduob×q&i A2.5MS (aiema)) SEC.T0P_UCE_GTG SEC_T0P_UCE_0UT SEC_T0P_JMR_15P SEC_T0P_JMR_15P SEC_T0P_JMR_15P SEC_T0P_JMR_15P SEC_T0P_JMR_15P SEC_T0P_JMR_16P SEC_T0P_JMR_20P SEC_T0P_JMR_20P SEC. BOT - UCE - GFG SEC. BOT - VCE. - OUT SEC. BOT - NRL - ISP SEC. BOT - PRIL, SP SEC. BOT - PRIL, SN SEC. BOT - PRIL, SN SEC. BOT - DRAL, SN SE PRIM_NERROR_UNT PRIM_NERROR_OUT PRIM_PWR_GNU PRIM_PWR_GNU PRIM_BOT_OUT PRIM_BOT_OUT PRIM_BOT_OUT PRIM_BOT_OUT PRIM_BOT_OUT PRIM_BOT_OUT 盟 C27 -B V20 B \leq 5MBJ15A 21400 (SMD) BnF 220 6 BhF 協 BnF N 5080 -BB 80F 1 000 CS1 BB μL 12 MPLA RIG MPLA R. MINI Ē. Σ S ໝ ໝິມ dØ, B L Μ D D N D N D SMD X22 - U m 4 00111004 1011004 ທ CMD (maie) RM2.54 14p IF_HB_BOT IF_ERROR_OUT IF_HB_TOP IF_PWR_ISP IF_PWR_ISP IF_PWR_GND

Parts List

Parts List Adaptor Board

Count	Ref. Designator	Value	Pattern Name	Description
4	C151, C153, C251, C253	4,7µF	1210 (SMD)	Capacitor X7R
4	C152, C154, C252, C254	2,2µF	1210 (SMD)	Capacitor X7R
4	C20, C21, C22, C23	1nF	0805 (SMD)	Capacitor X7R
1	C27	220uF/35V	SMD	Longlife-Elko
1	R10	0,00Ohm	MiniMelf (SMD)	
3	R11, R161, R261	10,0KOhm	MiniMelf (SMD)	1%
8	R111, R112, R113, R114, R211, R212, R213, R214	0,51Ohm	Melf (SMD)	2%
8	V111, V112, V113, V114, V211, V212, V213, V214	10BQ100N	DO214AA (SMD)	Diode Schottky
2	V150, V250	BY203/20S		High Voltage Diode
1	V20	SMBJ15A	DO215AA (SMD)	Suppressor Diode
3	X10, X100, X200	RM2,54 10p.	SMD	Box Connector
1	X20	14p.	SMD	Connector

TP: Test Point

Box Connector: SUYIN 254100FA010G200ZU

DISCLAIMER

SEMIKRON reserves the right to make changes without further notice herein to improve reliability, function or design. Information furnished in this document is believed to be accurate and reliable. However, no representation or warranty is given and no liability is assumed with respect to the accuracy or use of such information. SEMIKRON does not assume any liability arising out of the application or use of any product or circuit described herein. Furthermore, this technical information may not be considered as an assurance of component characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability. This document supersedes and replaces all information previously supplied and may be superseded by updates without further notice.

SEMIKRON products are not authorized for use in life support appliances and systems without the express written approval by SEMIKRON.

www.SEMIKRON.com