

IGBT4 Medium Power Chip

Features:

- 1200V Trench + Field stop technology
- low switching losses
- soft turnoff
- positive temperature coefficient
- easy paralleling

This chip is used for:

• medium power modules

٠	medium	power	drives
---	--------	-------	--------

Applications:

Chip Type V _{CE} I _{Cn}		I Cn	Die Size	Package		
IGC142T120T6RM	1200V	150A	11.31 x 12.56 mm ²	sawn on foil		

MECHANICAL PARAMETER

Raster size	11.31 x 12.56				
Emitter pad size (incl. gate pad)	11.04 x 9.80	mm ²			
Gate pad size	1.31 x 0.81				
Area total / active	142.1 / 113.1				
Thickness	120	μm			
Wafersize	150	mm			
Flat position	90	grd			
Max.possible chips per wafer	94				
Passivation frontside	Photoimide				
Pad metal	3200 nm AlSiCu				
Backside metal	Ni Ag –system suitable for epoxy and soft solder die bonding				
Die bond	Electrically conductive glue or solder				
Wire bond	Al, <500μm				
Reject ink dot size	Ø 0.65mm ; max 1.2mm				
Recommended storage environment	Store in original container, in dry nitrogen, < 6 month at an ambient temperature of 23°C				

MAXIMUM RATINGS

Parameter	Symbol	Value	Unit	
Collector-Emitter voltage, T_j =25 °C	V _{CE}	1200	V	
DC collector current, limited by $T_{j max}$	I _C	1)	А	
Pulsed collector current, ${\bf t}_{\rm b}$ limited by T_{jmax}	I _{c,puls}	450	А	
Gate-Emitter voltage	V _{GE}	±20	V	
Maximum junction temperature	T _{vj,max}	-40 +175	°C	
Short circuit data ² V _{GE} = 15V, V _{CC} = 800V, T_{ij} = 150°C	t _{p,max}	10	μs	
Reverse bias safe operating area ² (RBSOA) $I_{F,max} = 300A, V_{R,max} = 1200V, T_{vj,op} \le 1000$				

¹⁾ depending on thermal properties of assembly

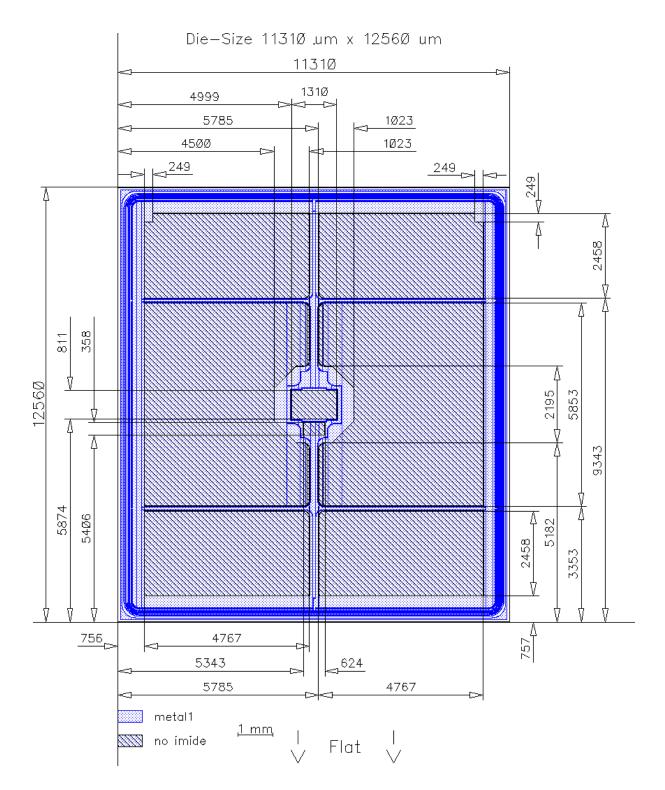
²⁾ not subject to production test - verified by design/characterization

STATIC CHARACTERISTICS (tested on wafer), $\mathit{T_{j}}\text{=}25~^{\circ}\text{C}$

Parameter	Symbol	Conditions	Value			Unit
			min.	typ.	max.	onne
Collector-Emitter breakdown voltage	V _{(BR)CES}	$V_{GE}=0V$, $I_C=6$ mA	1200			
Collector-Emitter saturation voltage	V _{CE(sat)}	V _{GE} =15V, I _C =150A	1.55	1.8	2.05	V
Gate-Emitter threshold voltage	V _{GE(th)}	I_C =6mA , V_{GE} = V_{CE}	5.0	5.8	6.5	
Zero gate voltage collector current	I _{CES}	V_{CE} =1200V , V_{GE} =0V			20	μA
Gate-Emitter leakage current	I _{GES}	$V_{CE}=0V$, $V_{GE}=20V$			600	nA
Integrated gate resistor	R _{Gint}			5		Ω

ELECTRICAL CHARACTERISTICS (not subject to production test - verified by design / characterization)

Parameter	Symbol	Conditions	Value			Unit
T di diffetei	Gymbol	Conditions	min.	typ.	max.	Onit
Input capacitance	Ciss	$V_{CE}=25V$,		9300		
Output capacitance	Coss	$V_{GE} = 0 V$,		580		рF
Reverse transfer capacitance	C _{rss}	f=1MHz		510		


SWITCHING CHARACTERISTICS inductive load (not subject to production test - verified by design / characterization)

Parameter	Symbol	Conditions ¹⁾	Value			Unit
Faranielei			min.	typ.	max.	
Turn-on delay time	t _{d(on)}	$T_{j} = 125^{\circ}C$ $V_{CC} = 600V,$ $I_{C} = 150A,$ $V_{GE} = -15/15V,$ $R_{GE} =\Omega$		tbd		
Rise time	t _r			tbd		– ns
Turn-off delay time	t _{d(off)}			tbd		
Fall time	t _f			tbd		

¹⁾ values also influenced by parasitic L- and C- in measurement and package.

CHIP DRAWING

Edited by IN FINEON Technologies , AIM PMD D CID CLS , L7693B, Edition 1, 31.10.2007

FURTHER ELECTRICAL CHARACTERISTICS

Switching characteristics and thermal properties are depending strongly on module design and mounting technology and can therefore not be specified for a bare die. Further technical information about the performance of this chip in moduletbd is given

exemplarily at www.infineon.com/igbtmodules.

DESCRIPTION

AQL 0,65 for visual inspection according to failure catalogue

Electrostatic Discharge Sensitive Device according to MIL-STD 883

Test-Normen Villach/Prüffeld

Published by Infineon Technologies AG 81726 Munich, Germany © Infineon Technologies AG 2007 All Rights Reserved

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives world-wide (see address list).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life -support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and / or maintain and sustain and / or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.