

U309 N-CHANNEL JFET

Linear Systems replaces discontinued Siliconix U309

The U309 is a high frequency n-channel JFET offering a wide range and low noise performance. The hermetically sealed TO-18 package is well suited for high reliability and harsh environment applications.

(See Packaging Information).

U309 Benefits:

- High Power Low Noise gain
- Dynamic Range greater than 100dB
- Easily matched to 75Ω input

U309 Applications:

- UHV / VHF Amplifiers
- Mixers
- Oscillators

FEATURES							
DIRECT REPLACEMENT FOR SILICONIX U309							
OUTSTANDING HIGH FREQUENCY GAIN Gpg = 11.5dB							
LOW HIGH FREQUENCY NOISE	NF = 2.7dB						
ABSOLUTE MAXIMUM RATINGS @ 25°C ¹							
Maximum Temperatures							
Storage Temperature	-55°C to +150°C						
Operating Junction Temperature	-55°C to +135°C						
Maximum Power Dissipation							
Continuous Power Dissipation	500mW						
MAXIMUM CURRENT							
Gate Current	10mA						
MAXIMUM VOLTAGES							
Gate to Drain Voltage or Gate to Source Voltage -25V							

U309 ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

SYMBOL	CHARACTERISTIC	MIN	TYP.	MAX	UNIT	CONDITIONS
BV_GSS	Gate to Source Breakdown Voltage	-25			V	$V_{DS} = 0V$, $I_{G} = -1\mu A$
$V_{GS(F)}$	Gate to Source Forward Voltage	0.7		1		$V_{DS} = 0V, I_{G} = 10mA$
V _{GS(off)}	Gate to Source Cutoff Voltage	-1		-4		$V_{DS} = 10V, I_{D} = 1nA$
I _{DSS}	Drain to Source Saturation Current ²	12		30	mA	$V_{DS} = 10V, V_{GS} = 0V$
I _G	Gate Operating Current (Note 3)		-15		pА	$V_{DG} = 9V, I_{D} = 10mA$
r _{DS(on)}	Drain to Source On Resistance		35		Ω	$V_{GS} = 0V$, $I_D = 1mA$

U309 DYNAMIC ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

SYMBOL	CHARACTERISTIC		MIN	TYP.	MAX	U <mark>NI</mark> T	CONDITIONS
g fs	Forward Transconductance		10	14		mS	$V_{DS} = 10V$, $I_{D} = 10mA$, $f = 1kHz$
g _{os}	Output Conductance			110	2 <mark>50</mark>	μS	
C _{iss}	Input Capacitance		-	4	5	pF	$V_{DS} = 10V$, $V_{GS} = -10V$, $f = 1MHz$
C_{rss}	Reverse Transfer Capacitance	1	; _	1.9	2.5		
e _n	Equivalent Noise Voltage		6			nV/√Hz	$V_{DS} = 10V$, $I_{D} = 10$ mA, $f = 100$ Hz

U309 HIGH FREQUENCY CHARACTERISTICS @ 25°C (unless otherwise noted)

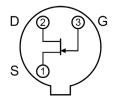
SYMBOL	CHARACTERISTIC		MIN	TYP	MAX	UNIT	CONDITIONS
NF	Noise Figure	f = 105MHz		1.5		dB	
		f = 450MHz		2.7		dB	
G_{pg}	Power Gain ³	f = 105MHz		16			
		f = 450MHz		11.5			_
g_{fg}	Forward Transconductance	f = 105MHz		14			$V_{DS} = 10V$, $I_D = 10mA$
		f = 450MHz		13		C	
g _{og}	Output Conductance	f = 105MHz		0.16		mS	
		f = 450MHz		0.55			

Note 1 - Absolute maximum ratings are limiting values above which U309 serviceability may be impaired.

Note 2 - Pulse test : PW \leq 300 μ s, Duty Cycle \leq 3% Note 3 - Measured at optimum input noise match

Micross Components Europe

micross


Tel: +44 1603 788967

Email: chipcomponents@micross.com Web: http://www.micross.com/distribution Available Packages:

U309 in TO-18 U309 in bare die.

Please contact Micross for full package and die dimensions

TO-18 (Bottom View)

Information furnished by Linear Integrated Systems and Micross Components is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.