

SST113 N-CHANNEL JFET

Linear Systems replaces discontinued Siliconix SST113

This n-channel JFET is optimised for low noise high performance switching. The part is particularly suitable for use in low noise audio amplifiers. The SOT-23 package is well suited for cost sensitive applications and mass production.

(See Packaging Information).

SST113 Benefits:

- Short Sample & Hold Aperture Time
- Low insertion loss
- Low Noise

SST113 Applications:

- Analog Switches
- Commutators
- Choppers

FEATURES					
DIRECT REPLACEMENT FOR SILICONIX SST113					
LOW GATE LEAKAGE CURRENT	5pA				
FAST SWITCHING	t _(on) ≤ 4ns				
ABSOLUTE MAXIMUM RATINGS @ 25°C (unless otherwise noted)					
Maximum Temperatures					
Storage Temperature	-55°C to +150°C				
Operating Junction Temperature	-55°C to +135°C				
Maximum Power Dissipation					
Continuous Power Dissipation	350mW				
MAXIMUM CURRENT					
Gate Current (Note 1)	50mA				
MAXIMUM VOLTAGES					
Gate to Drain Voltage	V _{GDS} = -35V				
Gate to Source Voltage	V _{GSS} = -35V				

SST113 ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

SYMBOL	CHARACTERISTIC	MIN	TYP.	MAX	UNITS	CONDITIONS
BV_GSS	Gate to Source Breakdown Voltage	-35				$I_{G} = 1\mu A$, $V_{DS} = 0V$
V _{GS(off)}	Gate to Source Cutoff Voltage			-3		$V_{DS} = 5V, I_{D} = 1\mu A$
$V_{GS(F)}$	Gate to Source Forward Voltage		0.7		V	$I_G = 1mA$, $V_{DS} = 0V$
I _{DSS}	Drain to Source Saturation Current (Note 2)	2			mA	$V_{DS} = 15V, V_{GS} = 0V$
I _{GSS}	Gate Reverse Current	-	-0.005	-1	nA	$V_{GS} = -15V, \ V_{DS} = 0V$
I_{G}	Gate Operating Current		-0.5		pА	$V_{DG} = 15V, I_{D} = 10mA$
I _{D(off)}	Drain Cutoff Current		0.005	1	nA	$V_{DS} = 5V, V_{GS} = -10V$
r _{DS(on)}	Drain to Source On Resistance	-		100	Ω	$I_G = 1 \text{mA}, V_{DS} = 0 \text{V}$

SST113 DYNAMIC ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

SYMBOL	CHARACTERISTIC	MIN	TYP.	MAX	UNITS	CONDITIONS
g _{fs}	Forward Transconductance	-	6		mS	$V_{DS} = 20V, I_D = 1mA, f = 1kHz$
g os	Output Conductance	-	25		μS	
r _{DS(on)}	Drain to Source On Resistance		-	100	Ω	$V_{GS} = 0V$, $I_D = 0mA$, $f = 1kHz$
C_{iss}	Input Capacitance	1	7	12	pF	$V_{DS} = 0V$, $V_{GS} = -10V$, $f = 1MHz$
C_{rss}	Reverse Transfer Capacitance	1	3	5		
e _n	Equivalent Noise Voltage		3		nV/√Hz	$V_{DG} = 10V$, $I_D = 1mA$, $f = 1kHz$

SST113 SWITCHING CHARACTERISTICS @ 25°C (unless otherwise noted)

SY	MBOL	CHARACTERISTIC		UNITS	CONDITIONS	
t	t _{d(on)}	Turn On Time	2	ns	V _{DD} = 10V	
	t _r	Turn On Rise Time	2		- ns	V _{GS} (H) = 0V
t	d(off)	Turn Off Time	6			See Switching Circuit
	t _f	Turn Off Fall Time	15			

Note 1 - Absolute maximum ratings are limiting values above which SST113 serviceability may be impaired. Note 2 - Pulse test: $PW \le 300 \ \mu s$, Duty Cycle $\le 3\%$

SST113 SWITCHING CIRCUIT PARAMETERS

$V_{GS(L)}$	-5V
R_L	3200Ω
I _{D(on)}	3mA

Available Packages:

SST113 in SOT-23 SST113 in bare die. SOT-23 (Top View)

Micross Components Europe

micross

Please contact Micross for full package and die dimensions

SWITCHING TEST CIRCUIT

Tel: +44 1603 788967

Email: chipcomponents@micross.com Web: http://www.micross.com/distribution