
# Voltage Transducer LV 100-1500

For the electronic measurement of voltages: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).





## $V_{DN} = 1500 V$



#### **Electrical data**

| $\mathbf{V}_{PN}$           | Primary nominal r.m.s. v         | oltage                  | 1500                       |                              | V  |
|-----------------------------|----------------------------------|-------------------------|----------------------------|------------------------------|----|
| V <sub>P</sub>              | Primary voltage, measuring range |                         | 0 ± 2250                   |                              | V  |
| I <sub>PN</sub>             | Primary nominal r.m.s. current   |                         | 6.66                       |                              | mA |
| $\mathbf{R}_{M}$            | Measuring resistance             |                         | $\mathbf{R}_{Mmin}$        | $\mathbf{R}_{\mathrm{Mmax}}$ |    |
|                             | with ± 15 V                      | @ ± 1500 V max          | 0                          | 170                          | Ω  |
|                             |                                  | @ ± 2250 V max          | 0                          | 90                           | Ω  |
| I <sub>SN</sub>             | Secondary nominal r.m.s. current |                         | 50                         |                              | mΑ |
| K <sub>N</sub>              | Conversion ratio                 |                         | 1500 V                     | / 50 mA                      | ١  |
| <b>v</b> c                  | Supply voltage (± 5 %)           |                         | ± 15                       |                              | V  |
| I <sub>c</sub>              | Current consumption              |                         | 10 + <b>I</b> <sub>s</sub> |                              | mA |
| $\breve{\mathbf{V}}_{_{d}}$ | R.m.s. voltage for AC isol       | ation test, 50 Hz, 1 mn | 6                          |                              | kV |

## Accuracy - Dynamic performance data

| X <sub>G</sub> | Overall Accuracy @ $\mathbf{V}_{PN}$ , $\mathbf{T}_{A}$ = 25°C Linearity                                                                                                                              |            | ± 0.7 < 0.1         |                       | %<br>%         |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------|-----------------------|----------------|
| O              | Offset current @ $\mathbf{I}_{\mathrm{P}} = 0$ , $\mathbf{T}_{\mathrm{A}} = 25^{\circ}\mathrm{C}$<br>Thermal drift of $\mathbf{I}_{\mathrm{O}}$<br>Response time @ 90 % of $\mathbf{V}_{\mathrm{PN}}$ | 0°C + 70°C | Typ<br>± 0.2<br>120 | Max<br>± 0.2<br>± 0.3 | mΑ<br>mA<br>μs |

#### General data

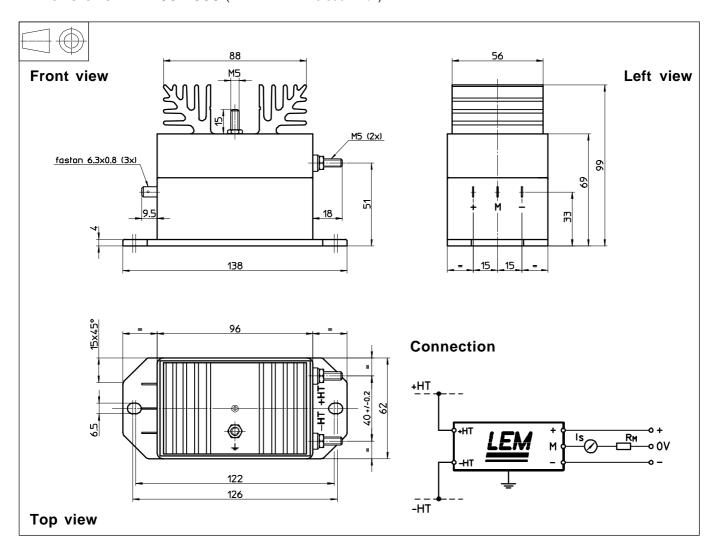
| $T_A$                               | Ambient operating temperature                     | 0 + 70       | °C        |
|-------------------------------------|---------------------------------------------------|--------------|-----------|
| T <sub>s</sub>                      | Ambient storage temperature                       | - 25 + 85    | °C        |
| N                                   | Turns ratio                                       | 15000 : 2000 |           |
| Р                                   | Total primary power loss                          | 10           | W         |
| $\mathbf{R}_{\scriptscriptstyle 1}$ | Primary resistance @ T <sub>A</sub> = 25°C        | 225          | $k\Omega$ |
| $\mathbf{R}_{\mathrm{s}}$           | Secondary coil resistance @ T <sub>A</sub> = 70°C | 60           | $\Omega$  |
| m                                   | Mass                                              | 850          | g         |
|                                     | Standards                                         | EN 50178     |           |
|                                     |                                                   |              |           |

#### **Features**

- Closed loop (compensated) voltage transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0
- Primary resistor incorporated into the housing.

#### **Advantages**

- Excellent accuracy
- Very good linearity
- Low thermal drift
- High immunity to external interference.


#### **Applications**

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications.

030129/4



### **Dimensions LV 100-1500** (in mm. 1 mm = 0.0394 inch)



#### **Mechanical characteristics**

- General tolerance
- Transducer fastening

Fastening torque max

- Connection of primary
- Connection of secondary
- Connection to the ground
- Fastening torque max
- ± 0.3 mm 2 holes Ø 6.5 mm M6 steel screws 5 Nm or 3.69 Lb - Ft. M5 threaded studs Faston 6.3 x 0.8 mm M5 threaded stud 2.2 Nm or 1.62 Lb. -Ft.

#### **Remarks**

- $\bullet$   $\mathbf{I}_{_{\mathrm{S}}}$  is positive when  $\mathbf{V}_{_{\mathrm{P}}}$  is applied on terminal +HT.
- The primary circuit of the transducer must be linked to the connections where the voltage has to be measured.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.