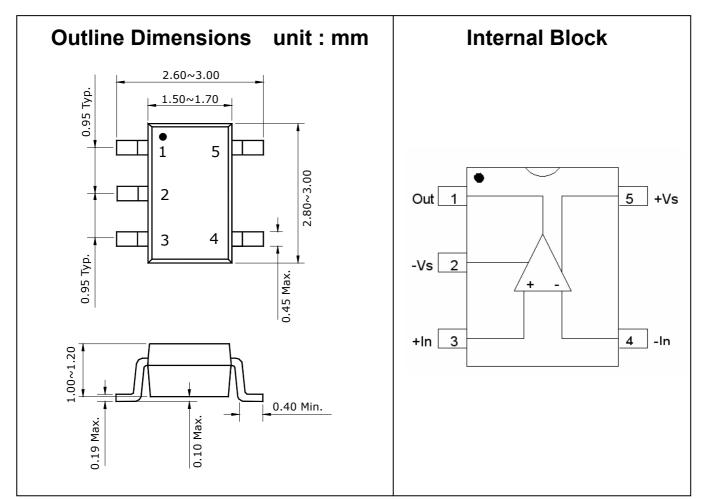


Description

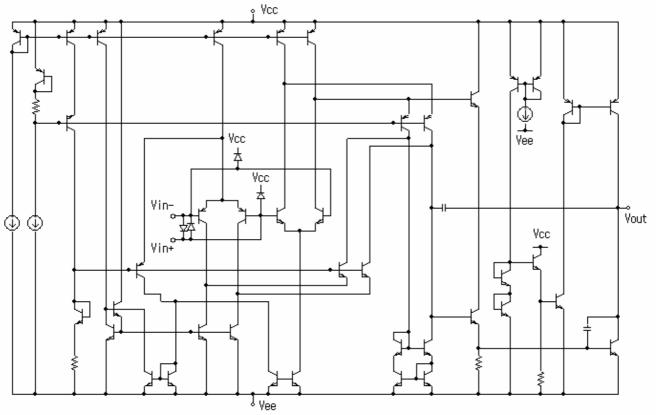
The S33201M is operational amplifiers provide rail-to-rail operation on both the input and output. The inputs can be driven as high as 200mV beyond the supply rails without phase reversal on the outputs, and the output can swing within 50mV of each rail. This rail-to-rail operation enables the user to make full use of the supply voltage range available. It is designed to work at very low supply voltages (\pm 0.9 V) yet can operate with a supply of up to +12V and ground. Output current boosting techniques provide a high output current capability while keeping the drain current of the amplifier to a minimum. Also, the combination of low noise and distortion with a high slew rate and drive capability make this an ideal amplifier for audio applications.

Features

- Low Voltage, Single Supply Operation (+1.8 V and Ground to +12 V and Ground)
- Input Voltage Range Includes both Supply Rails
- Output Voltage Swings within 50 mV of both Rails
- No Phase Reversal on the Output for Over-driven Input Signals
- High Output Current (I_{SC} = 30 mA, Typ)
- Low Supply Current (I_{CC} = 0.9 mA, Typ)
- 600 Ω Output Drive Capability
- Typical Gain Bandwidth Product = 2.2 MHz


Applications

 Low cost general purpose applications 	 Cellular phones
• A/D buffer	 DSP interface
Smart card readers	 Portable test instruments
Keyless entry	 Telephone systems
 Audio applications 	 Digital still cameras
Hard disk drives	 MP3 players


Ordering Information

Type NO.	Marking	Package Code		
S33201M	332	SOT-25		

S33201M

Circuit Schematic

Absolute maximum ratings

Characteristic	Symbol	Rating	Unit	
Supply Voltage (V_{CC} to V_{EE})	V _{CC}	+13	V	
Input Differential Voltage Range	V _{IDR}	Note1	V	
Common Mode Input Voltage Range (Note2)	V _{CM}	V _{CC} + 0.5V to V _{EE} - 0.5V	V	
Power Dissipation	P _D	0.5	W	
Operating Ambient Temperature Range	T _{OPR}	-40 to 85	°C	
Storage Temperature	T _{STG}	-55 to 150	°C	

Notes ;

1. The differential input voltage of each amplifier is limited by two internal parallel back-to-back diodes. for additional differential input voltage range, use current limiting resistors in series with the input Pins.

2. The input common mode voltage range is limited by internal diodes connected from the inputs to both supply rails. Therefore, the voltage on either input must not exceed either supply rail by more than 500mV.

Electrical Characteristics (Ta=25°C)

Characteristic			Unit		
		2.0	3.3	5.0	Unit
Output Voltage Swing	V _{OH} (Min)	1.9	3.15	4.85	V
(Note)	V _{OL} (Max)	0.10	0.15	0.15	V
Supply Current	Icc	1.125	1.125	1.125	mA

Specifications at V_{CC} = 3.3V are guaranteed by the 2.0V and 5.0V tests. V_{EE} = GND.

Note : ($R_L = 10 \text{ k}\Omega$)

Electrical Characteristics

(V_{CC} = +5.0V, V_{EE} = GND, Ta=25 $^{\circ}$ C, unless otherwise noted.)

Characteristic	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Input Offset Voltage	V _{IOS}	V _{CM} 0V to 0.5V, V _{CM} 1.0V to 5.0V	-	-	6	mV
Input Offset Voltage Temperature Coefficient	ΔV _{IO} /ΔT	R _S =50Ω	-	2	-	℃ /\لاير
Input Bias Current	I _{IB}	V _{CM} =0V to 0.5V V _{CM} =1.0V to 5.0V	-	300	500	nA
Input Offset Current	I _{IO}	V _{CM} =0V to 0.5V V _{CM} =1.0V to 5.0V	-	5	50	nA
Common Mode Input Voltage Range	V _{ICR}	-	V_{EE}	-	V _{CC}	V

Electrical Characteristics (cont.) $(V_{CC} = +5.0V, V_{EE} = GND, Ta = 25 \degree$, unless otherwise noted.)

Chara	cteristic	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Large Signal Voltage Gain (V _{CC} =+5V, V _{EE} =-5V)		•	RL=10 kΩ	50	300	-	kV /V
		A _{VOL}	R _L =600Ω	25	250	-	kV /V
		V _{он}	RL=10 kΩ	4.85	4.95	-	V
Output Voltage S	wing	∨он	RL=600Ω	4.75	4.85	-	V
(V _{ID} =±0.2V)			RL=10 kΩ	-	0.05	0.15	V
		V _{OL}	RL=600Ω	-	0.15	0.25	V
Common Mode Rejection		CMR	$(V_{IN} = 0V \text{ to } 5.0V)$	60	90	-	dB
Power Supply Rejection Ratio		PSRR	V_{CC}/V_{EE} = 5.0V/GND to 3.0V/GND	60	90	-	dB
Output Short	Source Current	I _{SO}	-	20	30	-	mA
Circuit Current	Sink Current	I _{SI}	-	10	20	-	mA
Supply Current		Icc	-	-	0.9	1.5	mA
Slew Rate		SR	(V _S =±2.5V, V _O =-2.0V to 2.0V, R _L =2 kΩ, A _V =1)	-	1	-	V/μs
Gain Bandwidth F	Product	GBW	-	-	2.2	-	MHz

S33201M

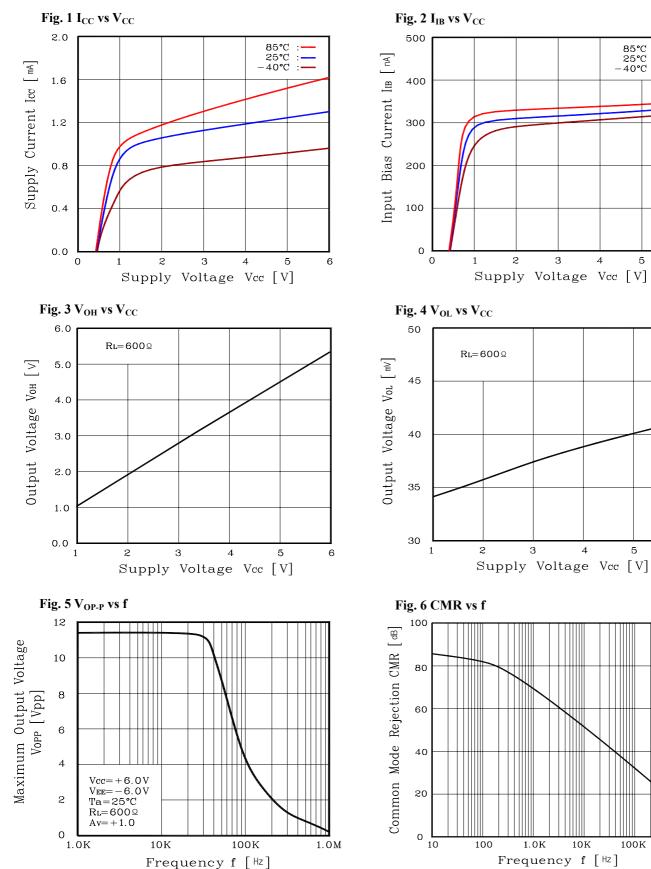
85°C 25°C -40°C

4

4

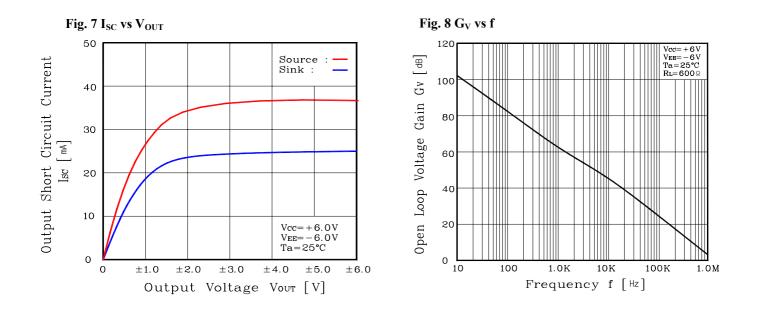
10K

100K


5

6

5


6

Electrical Characteristic Curves

1.OM

S33201M

The AUK Corp. products are intended for the use as components in general electronic equipment (Office and communication equipment, measuring equipment, home appliance, etc.).

Please make sure that you consult with us before you use these AUK Corp. products in equipments which require high quality and / or reliability, and in equipments which could have major impact to the welfare of human life(atomic energy control, airplane, spaceship, transportation, combustion control, all types of safety device, etc.). AUK Corp. cannot accept liability to any damage which may occur in case these AUK Corp. products were used in the mentioned equipments without prior consultation with AUK Corp..

Specifications mentioned in this publication are subject to change without notice.