MAGX-003135-180L00

GaN HEMT Pulsed Power Transistor 3.1 - 3.5 GHz, 180W Peak, 300us Pulse, 10% Duty

Preliminary 27 Sept 11

Features

- GaN depletion mode HEMT microwave transistor
- Common source configuration
- Broadband Class AB operation
- Thermally enhanced Cu/Mo/Cu package
- **RoHS Compliant**
- +50V Typical Operation
- MTTF of 114 years (Channel Temperature < 200°C)
- **EAR99 Export Classification**

Application

Civilian and Military Pulsed Radar

Product Description

The MAGX-003135-180L00 is a gold metalized matched Gallium Nitride (GaN) on Silicon Carbide RF power transistor optimized for civilian and military radar pulsed applications between 3100 -3500 MHz. Using state of the art wafer fabrication processes. these high performance transistors provide high gain, efficiency. bandwidth, ruggedness over a wide bandwidth for today's demanding application needs. The MAGX-003135-180L00 is constructed using a thermally enhanced Cu/Mo/Cu flanged ceramic package which provides excellent thermal performance. High breakdown voltages allow for reliable and stable operation in extreme mismatched load conditions unparalleled with older semiconductor technologies.

Typical RF Performance

60V, 300us, 10%

Freq. (MHz)	Pin (W Peak)	Pout (W Peak)	Gain (dB)	RL (dB)	Eff (%)
3100	14	200	11.5	-16	41
3300	14	192	11.4	-12	40
3500	14	195	11.5	-18	41

60V, 100us, 10%

Freq. (MHz)	Pin (W	Pout (W Peak)	Gain (dB)	RL (dB)	Eff (%)
3100	14	217	11.9	-17	43
3300	14	213	11.8	-12	42
3500	14	208	11.7	-17	42

Typical RF performance measured in M/A-COM RF test fixture. Devices tested in common source Class-AB configuration as follows: Vdd=60V, Idq=500mA (pulsed gate bias), F=3.1 - 3.5 GHz, Pulse Width=300us, Duty=10%.

Ordering Information

able. Commitment to produce in volume is not guaranteed.

MAGX-003135-180L00 180W GaN Power Transistor MAGX-003135-SB3PPR Evaluation Fixture

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simu-

lated results, and/or prototype measurements. Commitment to develop is not guaranteed.

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be avail-

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Technology Solutions and its affiliates reserve the right to make changes to the

product(s) or information contained herein without notice.

MAGX-003135-180L00

GaN HEMT Pulsed Power Transistor 3.1 - 3.5 GHz, 180W Peak, 300us Pulse, 10% Duty

Preliminary 27 Sept 11

Absolute Maximum Ratings Table (1, 2, 3)

Supply Voltage (Vdd)	+65V
Supply Voltage (Vgg)	-8 to 0V
Supply Current (Id1)	10A
Input Power (Pin)	+37 dBm
Absolute Max. Junction/Channel Temp	200 °C
MTTF (TJ<200°C)	114 years
Pulsed Power Dissipation (Pavg) at 85 °C	192 W
Thermal Resistance, (Tchannel = 200 °C) Pulsed 500uS, 10% Duty cycle	0.6 °C/W
Operating Temp	-40 to +95C
Storage Temp	-65 to +150C
Mounting Temperature	See solder reflow profile
ESD Min Machine Model (MM)	50 V
ESD Min Human Body Model (HBM)	>250 V
MSL Level	MSL1

⁽¹⁾ Operation of this device above any one of these parameters may cause permanent damage.

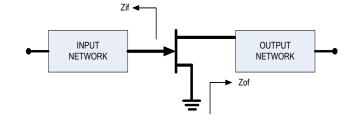
⁽³⁾ For saturated performance it recommended that the sum of (3*Vdd + abs(Vgg)) <175

Parameter	Test Conditions	Symbol	Min	Тур	Max	Units
DC CHARACTERISTICS	DC CHARACTERISTICS					
Drain-Source Leakage Current	V _{GS} = -8V, V _{DS} = 175V	I _{DS}	-	-	12	mA
Gate Threshold Voltage	$V_{DS} = 5V, I_{D} = 30mA$	V _{GS (th)}	-5	-3	-2	V
Forward Transconductance	$V_{DS} = 5V, I_{D} = 3.5 mA$	G_{M}	5.0	-	-	S
DYNAMIC CHARACTERISTICS						
Input Capacitance	Not applicable - Input internally matched	C_GS	N/A	N/A	N/A	pF
Output Capacitance	V_{DS} = 50V, V_{GS} = -8V, F = 1MHz	Coss	-	26.1	30.3	pF
Reverse Transfer Capacitance	V_{DS} = 50V, V_{GS} = -8V, F = 1MHz	C _{RSS}	1	2.3	4.7	pF

⁽²⁾ Channel temperature directly affects a device's MTTF. Channel temperature should be kept as low as possible to maximize lifetime.

[•] Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300 Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

MAGX-003135-180L00

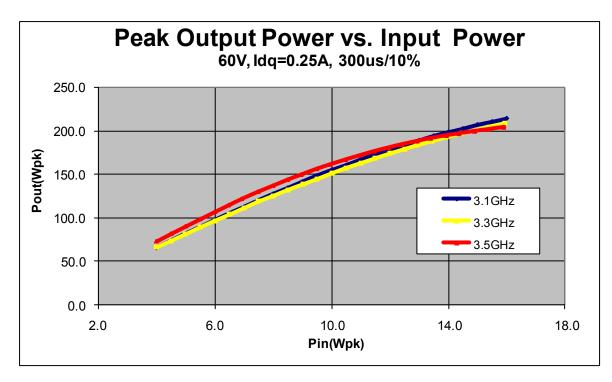

GaN HEMT Pulsed Power Transistor 3.1 - 3.5 GHz, 180W Peak, 300us Pulse, 10% Duty Preliminary 27 Sept 11

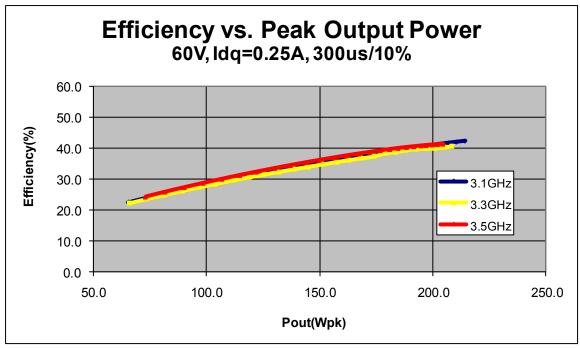
Electrical Specifications: $T_C = 25 \pm 5^{\circ}C$ (Room Ambient)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Units
RF FUNCTIONAL TESTS (V_{DD} = 60V, I_{DQ} = 250mA, 300us pulse / 10% duty, 3.1 - 3.5 GHz)						
Output Power	Pin = 14W Peak, 1.4W Ave	P _{OUT}	180	194	-	W Peak
Power Gain	Pout = 180W Peak, 18W Ave	G _P	10.5	11.4	-	dB
Drain Efficiency	Pin = 14W Peak, 1.4W Ave	η_{D}	38	41	-	%
Load Mismatch Stability	Pin = 14W Peak, 1.4W Ave	VSWR-S	5:1	-		-
Load Mismatch Tolerance	Pin = 14W Peak, 1.4W Ave	VSWR-T	10:1	-		-

Test Fixture Impedance

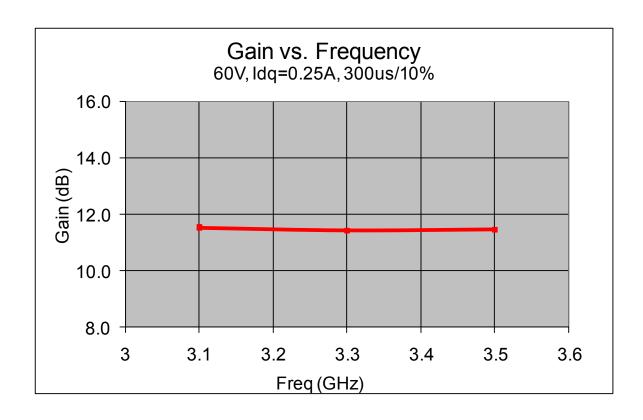
F (MHz)	Z _{IF} (Ω)	Z _{OF} (Ω)
3100	3.0 - j5.5	2.5 - j3.0
3300	2.9 - j5.0	2.3 - j3.1
3500	2.4 - j4.8	1.4 - j2.8

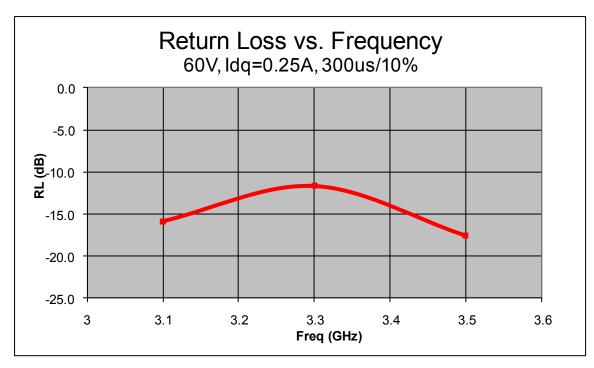



Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
 Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Visit www.macomtech.com for additional data sheets and product information.

Preliminary 27 Sept 11


ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.


PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

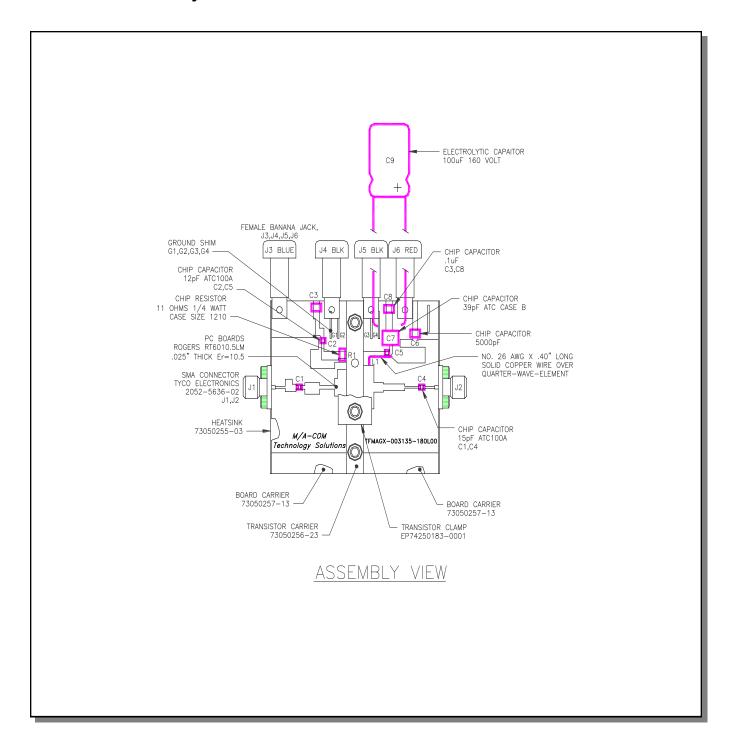
- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

Preliminary 27 Sept 11

5

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

able. Commitment to produce in volume is not guaranteed.


PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be avail-

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300 • Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
- Visit www.macomtech.com for additional data sheets and product information.

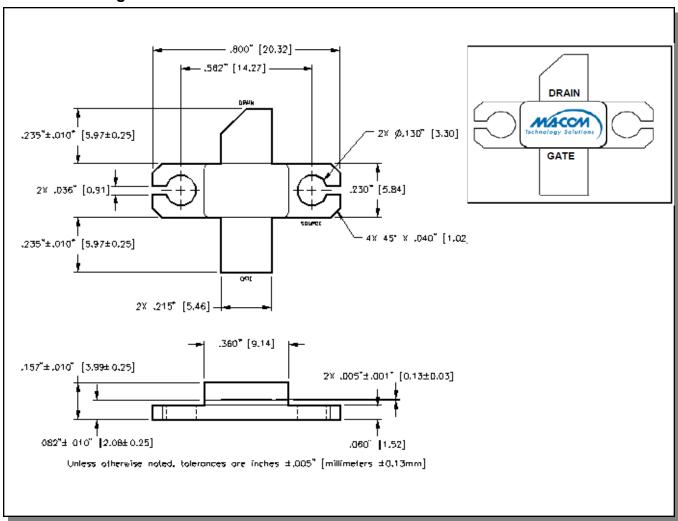
Preliminary 27 Sept 11

Test Fixture Assembly

6

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.


- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Technology Solutions and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Preliminary 27 Sept 11

Outline Drawing

CORRECT DEVICE SEQUENCING

TURNING THE DEVICE ON

- 1. Set V_{GS} to the pinch-off (V_P) , typically -5V
- 2. Turn on V_{DS} to nominal voltage (60V)
- 3. Increase V_{GS} until the I_{DS} current is reached
- 4. Apply RF power to desired level

TURNING THE DEVICE OFF

- 1. Turn the RF power off
- 2. Decrease V_{GS} down to V_P
- 3. Decrease V_{DS} down to 0V
- 4. Turn off V_{GS}

7

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.