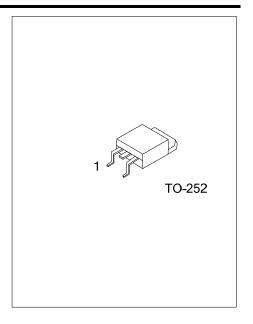


UNISONIC TECHNOLOGIES CO., LTD

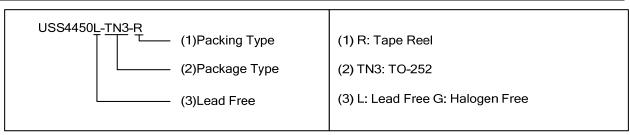
USS4450

NPN SILICON TRANSISTOR


50V, 5A NPN LOW V_{CE(SAT)} **TRANSISTOR**

DESCRIPTION

The UTC ${ t USS4450}$ is a NPN transistor with low ${ t V}_{ t CEsat.}$ It has high collector current I_C , I_{CM} performance. This device can be used in power management applications, such as DC/DC converters, supply line switching, battery charger and linear voltage regulation (LDO) and peripheral drivers, such as driver in low supply voltage applications and inductive load driver.


FEATURES

- * Less heat dissipation due to high efficiency
- * Low collector-emitter saturation voltage
- * High collector current capability
- * High collector current gain under high collector current condition

ORDERING INFORMATION

Ordering Number		Dookogo	Pin Assignment			Dooking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
USS4450L-TN3-R	USS4450G-TN3-R	TO-252	В	С	Е	Tape Reel	

www.unisonic.com.tw 1 of 4 QW-R209-026.A

■ ABSOLUTE MAXIMUM RATINGS (Ta=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Collector-Base Voltage		V_{CBO}	60	V
Collector-Emitter Voltage		V_{CEO}	50	V
Emitter-Base Voltage		V_{EBO}	6	V
Collector Current	DC	Ic	3	Α
Collector Current	Peak	I _{CM}	5	Α
Peak Base Current		I _{BM}	1	Α
Power Dissipation (T _C =25°C) (Note 2)		P_{D}	1.4	W
Junction Temperature		TJ	150	°C
Operating Temperature		T _{OPR}	+150	°C
Storage Temperature		T _{STG}	-65 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

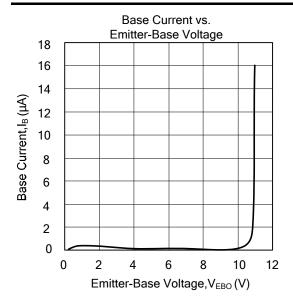
■ THERMAL CHARACTERISTICS

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient (Note)	θ_{JA}	62.5	°C/W

Notes Device mounted on a printed-circuit board; single sided copper; tinplated; mounting pad for collector 6 cm². For other mounting conditions see "Thermal considerations for TO-252 in the General Part of associated Handbook".

■ ELECTRICAL CHARACTERISTICS T_A = 25 °C unless otherwise specified.


PARAMETER	SYMBOL	TEST CONDITIONS		TYP	MAX	UNIT
Collector-Base Cut-Off Current	I _{CBO}	$V_{CB} = 50 \text{ V}, I_{E} = 0$			100	nA
Collector-Base Cut-Off Current		V _{CB} = 50 V, I _E = 0, T _J = 150 °C			50	μА
Emitter-Base Cut-Off Current	I _{EBO}	V_{EB} =5V, I_C =0			100	nA
	h _{FE}	$V_{CE} = 2V, I_{C} = 500 \text{ mA}$	200			
DC Current Gain		$V_{CE} = 2V, I_{C} = 1 A, (Note 1)$	200			
		V_{CE} =2V, I_{C} = 2 A, (Note 1)	100			
		$I_{\rm C}$ = 500 mA, $I_{\rm B}$ =50mA			90	mV
Collector-Emitter Saturation voltage	V _{CEsat}	I _C = 1 A, I _B =50mA			170	mV
		$I_C = 2 \text{ A}, I_B = 200 \text{ mA}, \text{ (Note 1)}$			290	mV
Equivalent On-Resistance	R _{CEsat}	$I_C = 2 \text{ A}, I_B = 200 \text{ mA}, \text{ (Note 1)}$		110	145	mΩ
Base-Emitter Saturation voltage	V_{BEsat}	$I_C = 2 \text{ A}, I_B = 200 \text{ mA}, \text{ (Note 1)}$			1.2	V
Base-Emitter Turn-On Voltage	V_{BEon}	V _{CE} =2V, I _C = 1 A, (Note 1)			1.1	V
Transition Frequency	f _T	$I_C = 100 \text{ mA}, V_{CE} = 5 \text{ V}, f = 100 \text{ MHz}$	100			MHz
Collector Capacitance	Cc	$V_{CB} = 10 \text{ V}, I_{E} = Ie = 0, f = 1 \text{ MHz}$			30	pF


Note 1. Pulse test: $t_p \le 300 \mu s$, $\delta \le 0.02$.

■ TYPICAL CHARACTERISTICS

^{2.} Device mounted on a printed-circuit board; single sided copper; tinplated; mounting pad for collector 6 cm²

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.