IL6083

PWM Power Control IC with Interference Suppression

Description

The designed IC is based on bipolar technology for the control of an N-channel power MOSFET used as a high-side switch. The IC is ideal for use in brightness control systems (dimming) of lamps, for example, in dashboard applications.

Features

- Protection Against Short-circuit, Load Dump Overvoltage
 and Reverse VS
- Duty Cycle 18 to 100% Continuously
- Internally Reduced Pulse Slope of Lamp's Voltage
- Interference and Damage Protection
- Charge-pump Noise Suppression
- Ground-wire Breakage Protection

Pin Configuration

Pin	Symbol	Pin Description		
01	Vs	Supply voltage		
02	GND	IC ground		
03	Vi	Control input (duty cycle)		
04	Osc	Oscillator		
05	Delay	Short-circuit protection delay		
06	Sense	Current sensing		
07	2Vs	Voltage doubler		
08	Output	Output		

Block diagram with External Circuit

Figure 2.

Maximum and Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Parameter,	Maximum Ratings		Absolute Maximum Ratings	
Symbol, Ont	min	max	min	Max
Supply voltage Vbatt, V	9.0	25		32.5
Storage temperature Tstg ^{, °} C			-55	+125
Ambient operation temperature range T _A , °C	-40	+110	-55	+125
Junction maximum temperature TJ(max), °C				+150
Temperature resistance junction – ambient Rth j-a, =120°C/W				

Functional Description

Pin 1, Supply Voltage, V_S or V_{Batt} Overvoltage Detection

Stage 1

If overvoltages of V_{Batt} > 20 V (typically) occur, the external transistor is switched off, and switched on again at V_{Batt} < 18.5 V (hysteresis).

Stage 2

If V_{Batt} > 28.5 V (typically), the voltage limitation of the IC is reduced from V_S = 26 V to 20 V. The gate of the external transistor remains at the potential of the IC ground, thus producing voltage sharing between FET and lamps in the event of overvoltage pulses (e.g. , load dump). The short - circuit protection is not in operation.

At V_{Batt} approximately < 23 V, the overvoltage detection stage 2 is switched off. Thus, during overvoltage detection stage 2, the lamp voltage V_{lamp} is calculated as follows:

 $V_{Lamp} = V_{Batt} - V_S - V_{GS}$ $V_S =$ supply voltage of the IC at overvoltage detection stage 2 V_{GS} = gate - source voltage of the FET

Undervoltage Detection

In the event of voltages of approximately V_{Batt} < 5.0 V, the external FET is switched off and the latch for short-circuit detection is reset.

A hysteresis ensures that the FET is switched on again at approximately $V_{Batt} \ge 5.4$ V.

Pin 2, GND

Ground-wire Breakage

To protect the FET in the case of ground-wire breakage, a 1 M Ω resistor between gate and source is recommended to provide proper switch-off conditions.

Pin 3, Control Input

The pulse width is controlled by means of an external potentiometer (47 k Ω). The characteristic (angle of rotation/duty cycle) is linear. The duty cycle can be varied from 18 to 100%. It is possible to further restrict the duty cycle with the resistors R₁ and R₂ (see Figure 4).

In order to reduce the power dissipation of the FET and to increase the lifetime of the lamps, the IC automatically reduces the maximum duty cycle at pin 8 if the supply voltage exceeds $V_2 = 13$ V. Pin 3 is protected against short-circuit to V_{Batt} and ground ($V_{Batt} \le 16.5$ V).

Pin 4, Oscillator

The oscillator determines the frequency of the output voltage. This is defined by an external capacitor, C_2 . It is charged with a constant current, I, until the upper switching threshold is reached. A second current source is then activated which taps a double current, 2 x I, from the charging current. The capacitor, C_2 , is thus discharged at the current, I, until the lower switching threshold is reached. The second source is then switched off again and the procedure starts once more.

Example for Oscillator

Frequency Calculation

Switching thresholds V_{T100} = High switching threshold (100% duty cycle) $V_{T100} = V_S \times \alpha_1 = (V_{Batt} - I_S \times R_3) \times \alpha_1$ $V_{T<100}$ = High switching threshold (< 100% duty cycle) $V_{T<100} = V_S \times \alpha_2 = (V_{Batt} - I_S \times R_3) \times \alpha_2$ V_{TL} = Low switching threshold $V_{TL} = V_S \times \alpha_3 = (V_{Batt} - I_S \times R_3) \times \alpha_3$ where α_1, α_2 and α_3 are fixed values

Calculation Example

The above mentioned threshold voltages are calculated for the following values given in the data sheet.

 $\begin{array}{l} V_{Batt} = 12 \text{ V}, \text{ Is} = 4 \text{ mA}, \text{ R}_3 = 150 \ \Omega, \ \alpha_1 = 0.7, \ \alpha_2 = 0.67 \text{ and } \alpha_3 = 0.28 \\ V_{T100} = (12 \text{ V} - 4 \text{ mA x } 150 \ \Omega) \text{ x } 0.7 \approx 8 \text{ V} \\ V_{T<100} = 11.4 \text{ V x } 0.67 = 7.6 \text{ V} \\ V_{TL} = 11.4 \text{ V x } 0.28 = 3.2 \text{ V} \end{array}$

Oscillator Frequency

3 cases have to be distinguished

1. f_1 for duty cycle = 100%, no slope reduction with capacitor C₄ (see Figure 4)

$$f_1=\frac{I_{OSC}}{2\times(V_{T100}-V_{TL})\times C_2}$$
 , where C_2 = 68 nF, I_{OSC} = 45 μA f_1 = ... = 75 Hz

2. f₂ for duty cycle < 100%, no slope reduction with capacitor C₄. For a duty cycle of less than 100%, the oscillator frequency, f, is as follows:

$$f_2=\frac{I_{OSC}}{2\times(V_{T<100}-V_{TL})\times C_2},$$
 where C_2 = 68 nF, I_{OSC} = 45 μA f_2 = ... = 69 Hz

3. f₃ with duty cycle < 100% with slope reduction capacitor C₄ (see "Output Slope Control")

Electrical parameters are given for temperature range from minus 40 to + 110° C and V_{batt}. From 9 to 16,5V. Operation is guaranteed for Vbatt from 6 to 9V. All electrical parameters are specified relatively to "common" output (02).

$$f_3 = \frac{I_{osc}}{2 \times (V_{T < 100} - V_{TL}) \times C_2 + 2V_{Batt} \times C_4}$$

where $C_2 = 68 \text{ nF}$, $I_{OSC} = 45 \mu A$, $C_4 = 1.8 \text{ nF}$

By selecting different values of C_2 and C_4 , it is possible to have a range of oscillator frequencies from 10 to 2000 Hz as shown in the data sheet.

Output Slope Control

The slope of the lamp voltage is internally limited to reduce radio interference by limitation of the voltage gain of the PWM comparator.

Thus, the voltage rise on the lamp is proportional to the oscillator voltage increase at the switchover time according to the equation.

$$dV_{9}/d_{t} = \alpha_{4} \times dV_{4}/d_{t} = 2 \times \alpha_{4} \times f \times (\alpha_{2} - \alpha_{3}) \times (V_{Batt} - I_{S} \times R_{3})$$

when

f = 75 Hz, $V_{TX} = V_T < 100$ and $\alpha_4 = 63$

then

 $dV_{g}/d_{t} = 2 \times 63 \times 75 \text{ Hz} \times (0.67 - 0.28) \times (12 \text{ V} - 4 \text{ mA} \times 15 \Omega) = 42 \text{ V/ms}$

Via an external capacitor, C4, the slope can be further reduced as follows:

 $dV_8/d_t = I_{OSC}/(C_4 + C_2/\alpha_4)$

when

 $I_{OSC} = 45 \ \mu\text{A}, C_4 = 1.8 \ \text{nF}, C_2 = 68 \ \text{nF}$ and $\alpha_4 = 63$

then $dV_8/d_t = 45 \ \mu A/(1.8 \ nF + 68 \ nF/63) = 15.6 \ V/ms$

To damp oscillation tendencies, a resistance of 100Ω in series with capacitance C₄ is recommended.

Interference Suppression

- "On-board" radio reception according to VDE 0879 part 3/4.81
- Test conditions refering to Figure 3
- Application circuit according to Figure 1 or Figure 4
- Load: nine 4 W lamps in parallel
- Duty cycle = 18%
- VBatt = 12 V
- fosc = 100 Hz

Figure 3. Voltage Spectrum of On-board Radio Reception

Pins 5 and Pin 6, Short-circuit Protection and Current Sensing

Short-circuit Detection and Time Delay, $t_{\rm d}$

The lamp current is monitored by means of an external shunt resistor. If the lamp current exceeds the threshold for the short-circuit detection circuit ($V_{T2} \approx 90 \text{ mV}$), the duty cycle is switched over to 100% and the capacitor C5 is charged by a current source of I_{ch} - I_{dis} . The external FET again is switched off after the cut-off threshold (V_{T5}) is reached. Switching on the FET again is possible after a power-on reset only. The current source, I_{dis} , ensures that the capacitor C_5 is not charged by parasitic currents.

The time delay, td, is calculated as follows:

 $t_d=C_5\times V_{T5}/(I_{ch}$ - $I_{dis})$ With C_5 = 100 nF and V_{T5} = 10.4 V, I_{ch} =13 µA, I_{dis} = 3 µA, the time delay is as follows: t_d = 100 nF \times 10.4 V/(13 µA - 3 µA) t_d = 104 ms

Current Limitation

The lamp current is limited by a control amplifier to protect the external power transistor. The voltage drop across the external shunt resistor acts as the measured variable. Current limitation takes place for a voltage drop of $V_{T1} \approx 100 \text{ mV}$. Owing to the difference $V_{T1} - V_{T2} \approx 10 \text{ mV}$, it ensures that current limitation occurs only when the short-circuit detection circuit has responded.

After a power-on reset, the output is inactive for half an oscillator cycle. During this time, the supply voltage capacitor can be charged so that current limitation is guaranteed in the event of a short-circuit when the IC is switched on for the first time.

Pins 7 and 8, Charge Pump and Output

Pin 8 (output) is suitable for controlling a power MOSFET. During the active integration phase, the supply current of the operational amplifier is mainly supplied by the capacitor C_3 (bootstrapping). In addition, a trickle charge is generated by an integrated oscillator ($f_7 \approx 400$ kHz) and a voltage doubler circuit. This permits a gate voltage supply at a duty cycle of 100%.

Table of Electrical Parameters

 T_{amb} = -40°C to +110°C, V_{Batt} = 9 to 16.5 V, (basic function is guaranteed between 6.0 V to 9.0 V) reference point ground, unless otherwise specified (see Figure 2). All other values refer to pin GND (pin 2).

Parameter	Symbol	Tost Conditions	Rate			Unit	
	Symbol		min	Тур.	max	Unit	
		Pin 1	r	1	r		
Current Consumption	ls				7.9	mA	
Supply voltage	V	Overvoltage			25	V	
	V batt	Detection, stage 1			23	v	
Stabilized voltage	Vs	Is=10mA	24.5		27.0	V	
I aval of the lowered battery veltage	V	Switching on	4.4	5.0	5.6	v	
	V batt	Switching off	4.8	5.4	6.0		
Bat	tery Ove	ervoltage Detection					
Stage 1	V	Switching on	18.3	20.0	21.7	V	
	Vbatt	Switching off	16.7	18.5	20.3		
Stage 2	V	Switching on	25.5	28.5	32.5	V	
Detection stage 2	V batt	Switching off	19.5	23.0	26.5		
Stabilized voltage	Vs	Is=30mA	18.5	20.0	21.5	V	
Sho	rt- Circu	it Protection, Pin 6					
short-circuit current limitation	V _{T1}	$V_{T1} = V_S - V_6$	85	100	120	mV	
Chart einevit veltage	V _{T2}	$V_{T2} = V_{S} - V_{6}$	75	90	105		
Short circuit voltage	$V_{T1} - V_{T2}$	$V_{T2} = V_{S} - V_{6}$	3	10	30	mv	
Delay Timer Short-circuit Detection. Vbatt = 12.0V. Pin 5							
Switch off threshold	V _{T5}	$V_{T5} = V_{S} - V_{5}$	10.2	10.4	10.6	V	
Charge current	I _{ch}			13		uA	
Dicharge current	I _{dis}			3		uA	
Capacitance current	I ₅	$I_5 = I_{ch} - I_{dis}$	5	10	15	mA	
Voltage doubler, Pin 7							
Voltage	V ₇	Duty cycle 100%	$2V_{\rm S}$			V	
Oscillator frequency	f ₇		280	400	520	kHz	
	V ₇	I ₇ =5mA (whichever is lower)	26.0	27.5	30.0		
internal voltage limitation			V _{S+14}	V _{S+15}	V _{S+16}	V	
	_	$dV_8/dt = \alpha_4 dV_4/dt$	53	63	72	11	
	α ₄	dV ₈ /dt _{max}			130	v/ms	

Paramatar	Symbol	Toot Conditions		l lmit				
Parameter		Test Conditions		Туре	max	Unit		
Gate Output , Pin 8								
		Low level	0.35	0.70	0.95			
		Vbatt = 16.5V						
Voltage	V ₈	Tamb = 110° C,			1.5*	V		
		R ₃ =150Ω						
		High level, duty cycle 100%		V ₇				
		V_8 = low level	1.0					
Current,	۱ ₈	V_8 = high level,	10			mA		
		₇ > ₈	-1.0					
		Min: C ₂ =68nF	15	18	21			
Duty cycle	t/T	Max: V _{batt} ≤12.4V,	100			%		
	чрмин /	V _{batt} = 16.5V,	6E	70	01			
		C 2=68nF	05	73	01			
		Oscillator, Pin 4						
Frequency	f		10		2000	Hz		
Threshold cycle	α ₁	$V_8 = High, \alpha_1 = \frac{V_{T100}}{V_S}$	0.68	0.7	0.72			
Upper	α ₂	$V_8 = Low, \alpha_2 = \frac{V_{T < 100}}{V_S}$	0.65	0.67	0.69			
Lower	α ₃	$\alpha_3 = \frac{V_{TL}}{V_S}$	0.26	0.28	0.3			
Oscillator current	± I _{OSC}	V _{batt} =12.0 V	34	45	54	uA		
Frequency	f C ₄ is open, C ₂ =68nF, duty cycle=50%		56	75	90	Hz		

* Reference point is battery ground

Application Circuit

Figure 4. Application Circuit

Package Outline Dimension DIP-8

N SUFFIX PLASTIC DIP (MS - 001BA)

NOTES:

1. Dimensions "A", "B" do not include mold flash or protrusions.

Maximum mold flash or protrusions 0.25 mm (0.010) per side.

8	
	Dimensio

	Dimension, mm			
Symbol	MIN	MAX		
Α	8.51	10.16		
В	6.1	7.11		
С		5.33		
D	0.36	0.56		
F	1.14	1.78		
G	2.54			
Н	7.62			
J	0°	10°		
К	2.92	3.81		
L	7.62	8.26		
Μ	0.2	0.36		
Ν	0.38			

