FUJI Power Supply Control IC

DC/DC Power Supply control IC

FA7711V

Application Note

WARNING

1. This Data Book contains the product specifications, characteristics, data, materials, and structures as of June 2010. The contents are subject to change without notice for specification changes or other reasons. When using a product listed in this Data Book, be sure to obtain the latest specifications.
2. All applications described in this Data Book exemplify the use of Fuji's products for your reference only. No right or license, either express or implied, under any patent, copyright, trade secret or other intellectual property right owned by Fuji Electric Co., Ltd. is (or shall be deemed) granted. Fuji makes no representation or warranty, whether express or implied, relating to the infringement or alleged infringement of other's intellectual property rights, which may arise from the use of the applications, described herein.
3. Although Fuji Electric is enhancing product quality and reliability, a small percentage of semiconductor products may become faulty. When using Fuji Electric semiconductor products in your equipment, you are requested to take adequate safety measures to prevent the equipment from causing a physical injury, fire, or other problem if any of the products become faulty. It is recommended to make your design fail-safe, flame retardant, and free of malfunction.
4.The products introduced in this Data Book are intended for use in the following electronic and electrical equipment, which has normal reliability requirements.

- Computers • OA equipment •Communications equipment (Pin devices)
- Measurement equipment •Machine tools • audiovisual equipment • electrical home appliances
- Personal equipment • Industrial robots etc.
5.If you need to use a product in this Data Book for equipment requiring higher reliability than normal, such as for the equipment listed below, it is imperative to contact Fuji Electric to obtain prior approval. When using these products for such equipment, take adequate measures such as a backup system to prevent the equipment from malfunctioning even if a Fuji's product incorporated in the equipment becomes faulty.
- Transportation equipment (mounted on cars and ships) • Trunk communications equipment
- Traffic-signal control equipment • Gas leakage detectors with an auto-shut-off feature
- Emergency equipment for responding to disasters and anti-burglary devices • Safety devices

6. Do not use products in this Data Book for the equipment requiring strict reliability such as (without limitation)

- Space equipment - Aeronautic equipment - Atomic control equipment
- Submarine repeater equipment - Medical equipment

7. Copyright © 1995 by Fuji Electric Co., Ltd. All rights reserved. No part of this Data Book may be reproduced in any form or by any means without the express permission of Fuji Electric.
8. If you have any question about any portion in this Data Book, ask Fuji Electric or its sales agents before using the product. Neither Fuji nor its agents shall be liable for any injury caused by any use of the products not in accordance with instructions set forth herein.

CONTENTS

1. Description 4
2. Features 4
3. Outline 4
4. Block diagram 5
5. Pin assignment 5
6. Ratings and characteristics 6
7. Characteristics curves 10
8. Description of each circuit 15
9. Design advice 18
10. Application circuit 25

Note

- Parts tolerance and characteristics are not defined in all application described in this Data book. When design an actual circuit for a product, you must determine parts tolerances and characteristics for safe and stable operation.

1. Description

FA7711V is a PWM type DC-to-DC converter control IC with 3ch outputs that can directly drive power MOSFETs. CMOS devices with high breakdown voltage are used in this IC and low power consumption is achieved. This IC is suitable for very small DC-to-DC converters because of their small and thin package (1.2 mm max.), and high frequency operation (to 800 kHz). You can select Pch or Nch of MOSFETs driven, and design any topology of DC-to-DC converter circuit like a buck, a boost, a inverting, a fly-back, or a forward.

2. Features

-MOSFET direct driving (Note : This function is available only for that Vcc is below 20V)

- Selectable output stage for Pch/Nch MOSFET on each channel
- Low operating current by CMOS process: 7mA (typ.)
- 3ch PWM control IC
-High frequency operation: 200 kHz to 800 kHz
- Simple setting of operation frequency by timing resistor
- Soft start function at each channel
- Adjustable maximum duty cycle at each channel
-Built-in under voltage lockout
- High accuracy reference voltage: VREF: $3.7 \mathrm{~V} \pm 1 \%$
- Adjustable built-in timer latch for short-circuit protection
-Thin and small package: TSSOP-24

3. Outline

5. Pin assignment

Pin No.	Pin symbol	
1	CP	Timer latched short circuit protection
2	RT	Oscillator timing resistor
3	SEL3	Selection of type of driven MOSFET(OUT3)
4	VREF	Reference voltage
5	SEL2	Selection of type of driven MOSFET(OUT2)
6	IN1+	Ch. 1 non-inverting input to error amplifier
7	IN1-	Ch.1 inverting input to error amplifier
8	FB1	Ch.1 output of error amplifier
9	GND	Ground
10	PGND	Ground for driver
11	CS1	Soft start for Ch.1
12	OUT1	Ch.1 output
13	OUT2	Ch.2 output
14	CS2	Soft start for Ch.2
15	OUT3	Ch.3 output
16	CS3	Soft start for Ch.3
17	PVCC	Power supply for driver
18	VCC	Power supply
19	FB2	Ch.2 output of error amplifier
20	IN2-	Ch.2 inverting input to error amplifier
21	IN2+	Ch.2 non-inverting input to error amplifier
22	FB3	Ch.3 output of error amplifier
23	IN3-	Ch.3 inverting input to error amplifier
24	IN3+	Ch.3 non-inverting input to error amplifier

6. Ratings and characteristics
(1)Absolute maximum ratings

Item	Symbol	Conditions	Ratings	Units
Power supply voltage (VCC,PVCC pin)	Vcc		30	V
SEL2,SEL3 pin voltage	V SEL		-0.3 to 5.0	V
$\begin{aligned} & \text { FB1,IN1-,IN1+,FB2,IN2-,IN2+,FB3,IN3-,I } \\ & \text { N3+ pin voltage } \end{aligned}$	$V_{\text {EA_IN }}$		- 0.3 to 5.0	V
CS1,CS2,CS3,CP,RT,VREF pin voltage	VCTR_IN		- 0.3 to 5.0	V
OUT1/2/3 pin source current	lout-		- 800(peak)	mA
OUT1/2/3 pin sink current	lout+		+800(peak)	mA
OUT1/2/3 pin source current	lout-		-50(continuous)	mA
OUT1/2/3 pin sink current	lout+		+50(continuous)	mA
Power dissipation	Pd	$\mathrm{Ta} \leqq 25^{\circ} \mathrm{C}$	800	mW
Operating junction temperature	T_{j}		+125	${ }^{\circ} \mathrm{C}$
Operating ambient temperature	Topr		-20 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		- 40 to +125	${ }^{\circ} \mathrm{C}$

*1: IC is soldered on glass-epoxy printed board ($40 \mathrm{~mm} \times 80 \mathrm{~mm} \times 1.6 \mathrm{~mm}$).
Derating factor $\mathrm{Ta} \geqq 25^{\circ} \mathrm{C}: 8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Thermal resistance: $\theta \mathrm{j}-\mathrm{c}$ (Junction to Case) $=70^{\circ} \mathrm{C} / \mathrm{W}$
IC is soldered on glass-epoxy printed board ($40 \mathrm{~mm} \times 80 \mathrm{~mm} \times 1.6 \mathrm{~mm}$).
(2)Recommended operating conditions

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Power supply voltage (VCC)	Vcc		4.5	-	28	V
Power supply voltage (PVCC) *2	V PCC		4.5	-	28	V
CS1,CS2,CS3,CP pin voltage	V CTR_IN		0.0	-	4.1	V
SEL2,SEL3 pin voltage	VSEL_IN		0.0	-	4.1	V
$\begin{aligned} & \text { IN1-,IN1+,IN2-,IN2+,IN3-,IN3+ } \\ & \text { pin voltage } \end{aligned}$	VEA_IN		0.0	-	4.1	V
Oscillation frequency	fosc		200	-	800	kHz
VREF pin capacitance	Cref		1.0	-	4.7	$\mu \mathrm{F}$
VCC pin capacitance	Cvcc		1.0	-	-	$\mu \mathrm{F}$
PVCC pin capacitance	Cpvcc		1.0	-	-	$\mu \mathrm{F}$
CS1,CS3 pin capacitance	Ccs1	Between CS1/3 and GND	0.1	-	-	$\mu \mathrm{F}$
CS2 pin capacitance	Ccs2	Between CS2 and VREF	0.1	-	-	$\mu \mathrm{F}$
CP pin capacitance	$\mathrm{C}_{\text {cp }}$	Between CP and GND	0.01	-	-	$\mu \mathrm{F}$

*2: Apply the same voltage to Vcc, PVCC pins.

(3)Electrical chracteristics

- The characteristics is based on the condition of $\mathrm{Vcc}=12 \mathrm{~V}, \mathrm{CREF}=1.0 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=9.0 \mathrm{k} \Omega, \mathrm{Ta}=+25^{\circ} \mathrm{C}$, unless otherwise specified

(1)Refreence voltage section (VREF pin)						
Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Reference voltage	$V_{\text {Ref }}$		3.663	3.700	3.737	V
Line regulation	VREF_LINE	$\mathrm{V}_{\mathrm{CC}}=4.5$ to $28 \mathrm{~V}, \mathrm{I}_{\mathrm{REF}}=0 \mathrm{~mA}$	-	± 8	± 25	mV
Load regulation	$V_{\text {Ref_load }}$	$\mathrm{I}_{\mathrm{REF}}=0$ to $7 \mathrm{~mA}, \mathrm{~V}_{\text {cc }}=8 \mathrm{~V}$ to 28 V	-20	- 5		mV
		$\mathrm{I}_{\mathrm{REF}}=0$ to $1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 8 V		- 5		
Variation with temperature	$\mathrm{V}_{\text {REF_TC1 }}$	$\mathrm{Ta}=-20$ to $+85^{\circ} \mathrm{C}$		± 0.5		\%

(2)Oscillator section (RT pin)

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Oscillation frequency	fosc	$\mathrm{R}_{\mathrm{T}}=9.0 \mathrm{k} \Omega$	500	560	620	kHz
Line regulation	fosc_LINE	$\mathrm{V}_{\mathrm{cc}}=4.5$ to 28 V	-	± 1	± 5	\%
Variation with temperature	fosc_tc1	Ta $=-20$ to $+85^{\circ} \mathrm{C}$		± 3		\%

(3)Error Amplifier section (IN1+, IN1-, FB1, IN2+, IN2-, FB2, IN3+, IN3-, FB3 pin)						
Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Input offset voltage	Voffset		-	-	± 10	mV
Line regulation (Input offset)	Voff_Line	$\mathrm{V}_{\mathrm{cc}}=4.5$ to 28 V		0		mV
Input current	1 N	$\mathrm{V}_{\text {IN }}=0.0$ to 5 V		0		$\mu \mathrm{A}$
Common mode input voltage	$\mathrm{V}_{\text {com }}$		0.5		2.7	V
Open loop gain	Avo			70		dB
Unity gain bandwidth	f_{T}			1.5		MHz
Output sink current	IsIFB	$\mathrm{V}_{\text {FB }}=0.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\mathrm{REF}}, \mathrm{V}_{\text {IN }+}=1.8 \mathrm{~V}$	1.9	2.7	3.5	mA
Output source current	Isofb	$\mathrm{V}_{\text {FB }}=\mathrm{V}_{\text {REF }}-0.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}^{+}}=1.8 \mathrm{~V}$	-280	-185	-90	$\mu \mathrm{A}$

(4)Soft start section (CS1, CS2, CS3 pin)

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Threshold voltage (CS3)	$\mathrm{V}_{\text {cssb20n }}$	Duту $=20 \%, \mathrm{~V}_{\text {Fв3 }}=2.8 \mathrm{~V}$	1.4	1.5	1.6	V
(Driving Nch-MOSFET)	Vcs3b8on	Dитт $3=80 \%, \mathrm{~V}_{\text {¢в }}=2.8 \mathrm{~V}$	2.0	2.1	2.2	V
Threshold voltage (CS1/3)	$\mathrm{V}_{\text {cS1 } 1300 \mathrm{P}}$	$\mathrm{Dutr} 1 / 3=20 \%, \mathrm{~V}_{\text {FB } 1 / 3}=2.8 \mathrm{~V}$	1.4	1.5	1.6	V
(Driving Pch-MOSFET)	$\mathrm{V}_{\text {cs } 13 \text { 2020 }}$	DutY $1 / 3=80 \%, \mathrm{~V}_{\text {FB } 1 / 3}=2.8 \mathrm{~V}$	2.0	2.1	2.2	V
Threshold voltage (CS2)	$V_{\text {cS22020 }}$	DuтT2 $=20 \%, \mathrm{~V}_{\text {FB2 }}=0.8 \mathrm{~V}$	2.0	2.1	2.2	V
(Driving Nch-MOSFET)	$V_{\text {cs2880 }}$	Dитт2 $=80 \%, V_{\text {Fв2 }}=0.8 \mathrm{~V}$	1.4	1.5	1.6	V
Threshold voltage (CS2)	$\mathrm{V}_{\text {cs2020 }}$	DuтT2 $=20 \%, \mathrm{~V}_{\text {FB2 }}=0.8 \mathrm{~V}$	2.0	2.1	2.2	V
(Driving Pch-MOSFET)	$\mathrm{V}_{\text {cS2280P }}$	Duт才 $2=80 \%, V_{\text {FB2 }}=0.8 \mathrm{~V}$	1.4	1.5	1.6	V

(5)Pulse width modulation section (FB1, FB2, FB3 pin)

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Threshold voltage (FB3) (Driving Nch-MOSFET)	$V_{\text {FB3D20N }}$	$\mathrm{Dutr3}=20 \%, \mathrm{~V}_{\text {cS }}=\mathrm{V}_{\text {REF }}$		1.5		V
	$\mathrm{V}_{\text {Fb3D80N }}$	$\mathrm{D}_{\text {UTY3 }}=80 \%, \mathrm{~V}_{\text {cs } 3}=\mathrm{V}_{\text {REF }}$		2.1		V
Threshold voltage (FB1/3) (Driving Pch-MOSFET)	$\mathrm{V}_{\text {FB1/3D20P }}$	$\mathrm{Dutr} 1 / 3=20 \%, \mathrm{~V}_{\text {cs } 1 / 3}=\mathrm{V}_{\text {REF }}$		1.5		V
	$\mathrm{V}_{\text {FB } 1 / 3 \mathrm{D} 80 \mathrm{P}}$	Duty $1 / 3=80 \%, \mathrm{~V}_{\text {cs } 1 / 3}=\mathrm{V}_{\text {REF }}$		2.1		V
Threshold voltage (FB2) (Driving Nch-MOSFET)	$\mathrm{V}_{\text {FB2D20N }}$	$D_{\text {UTY } 2}=20 \%, \mathrm{~V}_{\text {cs2 }}=0 \mathrm{~V}$		2.1		V
	$\mathrm{V}_{\text {FB2D80N }}$	$D_{\text {UTY } 2}=80 \%, \mathrm{~V}_{\text {CS2 }}=0 \mathrm{~V}$		1.5		V
Threshold voltage (FB2) (Driving Pch-MOSFET)	$V_{\text {FB2D20P }}$	$D_{\text {UTY2 }}=20 \%, \mathrm{~V}_{\text {cs2 }}=0 \mathrm{~V}$		2.1		V
	$\mathrm{V}_{\text {FB2D80P }}$	Duť2 $=80 \%$, $\mathrm{V}_{\text {cs2 } 2}=0 \mathrm{~V}$		1.5		V

(6)Under voltage lockout section (VCC pin)

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
ON threshold voltage of VCC	VuvLoon		2.6	3.3	4.0	V
Hysteresis voltage	VuvLohys			0.1		V

(7)Timer latch protection section (CP pin)						
Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Threshold voltage of FB1	$V_{\text {thfbion }}$	*7-1	2.8	3.0	3.2	V
Threshold voltage of FB2	$V_{\text {thfb2on }}$	*7-2	0.4	0.6	0.8	V
Threshold voltage of FB3	$\mathrm{V}_{\text {thfbion }}$	*7-3	2.8	3.0	3.2	V
Charge current of CP	ICP	$\mathrm{V}_{\mathrm{CP}}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB} 1}=\mathrm{V}_{\mathrm{REF}}-0.5 \mathrm{~V}$	-3.5	-2.5	-1.5	$\mu \mathrm{A}$
Threshold voltage of CP	$V_{\text {thcpon }}$		2.8	3.0	3.2	V

*7-1:The current source of the CP pin operates when the voltage of FB1 exceeds the threshold voltage as shown in the table *7-2:The current source of the CP pin operates when the voltage of FB2 fall below the threshold voltage as shown in the table *7-3:The current source of the CP pin operates when the voltage of FB3 exceeds the threshold voltage as shown in the table

(8)Output section (OUT1, OUT2, OUT3, SEL2, SEL3 pin)						
Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
High side on resistance	Ron+1	lout=- 100mA		3	5	Ω
Low side on resistance	Ronlo	lout $=+100 \mathrm{~mA}$		3	5	Ω
Rise time (Driving Pch-MOSFET)	trisep	VCC- OUT: $7 \Omega+2000 \mathrm{pF}$ *8-1		30		ns
Fall time (Driving Pch-MOSFET)	tFalle			30		
Rise time (Driving Nch-MOSFET)	trisen	OUT- GND: $7 \Omega+2000 \mathrm{pF}$		30		ns
Fall time (Driving Nch-MOSFET)	tralln			30		
SEL2/3 pin voltage for driving Nch-MOSFET	Vseln		0.0	-	0.35	V
SEL2/3 pin voltage for driving Pch-MOSFET	$V_{\text {selp }}$		$\begin{gathered} \hline \mathrm{V}_{\text {REF }} \\ -0.35 \end{gathered}$	-	$\mathrm{V}_{\text {REF }}$	V

(9)Overall section

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Operating mode supply current	Operating mode $\mathrm{R}_{\mathrm{T}}=9.0 \mathrm{k} \Omega$		7	9	mA	
			8	11		
	Iccol100	latch mode		4		mA

7. Characteristic curves

CP pin threshold voltage vs. Ambient temperature

UVLO threshold voltage vs. Ambient temperature

Operationg Mode Supply Current vs. Supply Voltage

8. Description of each circuit

(1) Reference voltage circuit

The circuit generates the reference voltage (VREF) of $3.70 \mathrm{~V} \pm 1 \%$ compensated in temperature from VCC voltage. This voltages start to output when the undervoltage lockout protection (UVLO) is cancelled, and they stabilize after the supply voltage (VCC) reaches up to approx. 4.0V or higher.
The voltage (VREF) outputs externally from REF Pin, therefore, it can serve as a stabilized power source for reference voltage of Error Amplifier and maximum output duty setting or the like. The output current circuit should be within 1 mA . (In case of $\mathrm{V}_{\mathrm{CC}}=8 \mathrm{~V}$ to 28 V should be within 7 mA) The $\mathrm{V}_{\text {REF }}$ voltage also is used as a regulated power supply for IC's internal blocks.
VREF pin have to connect capacitors $\mathrm{C}_{\text {REF }}$ for in order to stabilize voltages (To determine capacitance, refer to recommended operating conditions).

(2) Oscillator

The oscillator generates triangular waveforms by charging and discharging the built-in capacitor. Any desired oscillation frequency can be obtained by setting the value of the resistor connected to RT Pin (Fig. 1).

The voltage oscillates between approximately 1.3 V and 2.3 V in charging and discharging with almost the same gradients (Fig. 2). Your desired oscillation frequency can be determined by changing the gradient using the resistor (RT) connected to RT Pin. (Large RT: Low frequency, small RT: High frequency) The waveforms of oscillator cannot be observed from the outside because a Pin for this purpose is not provided.
Approximately DC 1V is output to RT Pin.
The oscillator output is connected to PWM comparator.

Fig. 2

(3) Error amplifier

Error Amplifier has the inverting input IN*(-) Pin (Pin7, Pin20 and pin23) and non-inverted input $\mathrm{IN}^{*}(+)$ Pin (Pin6, Pin21 and pin24) outputting externally, various circuit can be designed by kinds of external circuit structures. FB Pins (Pin, Pin19 and pin22) are the outputs of Error Amplifiers. Voltage Gain and phase compensation can be set by connecting a capacitor (C) and a resistor (R) between FB Pin and IN*(-) Pin.(Fig. 3) For more information about the connection for each output voltage of power supply, refer to Design Advice.

Fig. 3

(4) PWM comparator

The PWM output generates from the oscillator output, the error amplifier output (FB1, FB2 and FB3) and CS voltage (CS1, CS2 and CS3) (Fig. 4). The oscillator output is compared with the preferred lower voltage between FB and CS for ch1 and ch3. While the preferred voltage is lower than oscillator output, the PWM output is low. While the preferred voltage is higher than oscillator output, the PWM output is high. Since the phase of Ch2 is the opposite phase of ch1 and ch3, higher voltage between FB2 and CS2 is preferred and while the preferred voltage is lower than the oscillator output, the PWM output 2 is high. (Cannot be observed externally)
The output duty changes sharply around the minimum and the maximum output duty. This phenomenon occurs more conspicuously when operating in a high frequency (i.e. when the pulse width is narrow). Cautious care must be taken when using high frequency.
The output polarity of OUT1, OUT2 changes according to the condition of SEL pin. (See Fig. 6)

Fig. 4

(5) Soft start circuit

This IC has a soft start function to protect DC-to-DC converter circuits from damage when starting operation. CS1 pin (Pin11), CS2 pin (pin14) and CS3 pin (Pin16) are used for soft start function of ch1, ch3 and ch2 respectively. (Fig. 5)
When the supply voltage is applied to the VCC pin and UVLO is cancelled, capacitor Ccs1, Ccs2 and Ccs3 is charged by VREF through the resistor Rcs1, RCS2 or RCS3. Therefore, CS1 and CS3 voltage gradually increases and CS2 voltage gradually decreases. Since CS1, CS2 and CS3 pin are connected to the PWM comparator internally, the pulses gradually widen and then the soft start function operates. (Fig. 6)
The maximum duty cycle can be set by using the CS pins. (See Design Advice about the detail)

Fig. 5

Fig. 6
(6) Timer latched short-circuit protection

This IC has the timer latch short-circuit protection circuit. This circuit cuts off the output of all channels when the output voltage of DC-to-DC converter drops due to short circuit or overload. To set delay time for timer latch operation, a capacitor CCP should be connected to the CP pin (Fig. 7).

Fig. 7
When one of the output voltage of the DC-to-DC converter drops due to short circuit or overload, the FB1 and FB3 pin voltage increases up to around the VREF voltage for ch1 and ch3, or the FB2 pin voltage drops down to around 0 V for ch2. When FB1 and FB3 pin voltage exceeds 3.2 V (max.) or FB2 pin voltage falls below 0.4 V (min.), constant-current source ($2.5 \mu \mathrm{~A}$ typ.) starts charging the capacitor CCP connected to the CP pin. If the voltage of the CP pin exceeds 3.2 V (max.), the circuit regards the case as abnormal. Then the IC is set to off latch mode and the output of all channels is shut off, (Fig. 8) and the current consumption become 4 mA (typ.) The period (tp) between the occurrence of short-circuit in the converter output and setting to off latch mode can be calculated by the following equation:
$t p[s]=C C P \times \frac{V_{T H C P O N}}{I C P}$
VTHCPON: CP pin latched mode threshold voltage [V] $I C P$: CP charge source current $[\mu \mathrm{A}]$
CcP: capacitance of CP pin capacitor[$\mu \mathrm{F}]$

Fig. 8

You can reset off latched mode of the short-circuit protection by either of the following ways about 1) CP pin, or 2) VCC pin:

1) $C P$ voltage $=0 V$
2) VCC voltage UVLO voltage (3.3V, typ.) or below

If the timer-latched mode is not necessary, connect the CP pin to GND.

(7) Output circuit

The IC contains a push-pull output stage and can directly drive MOSFETs. The maximum peak current of the output stage is sink current of +800 mA , and source current of -800 mA . The IC can also drive NPN and PNP transistors. The maximum current in such cases is $\pm 50 \mathrm{~mA}$. You must design the output current considering the rating of power dissipation. (See Design Advice)
You can switch the types of external discrete MOSFETs by wiring of the SEL pins (Pin 3, Pin 5). For driving Nch MOS, connect the SEL pins to GND. For driving Pch MOS, connect the SEL pins to VREF. You can design buck converter or inverting converter by driving Pch MOS, and boost converter by driving Nch MOS.
Connect them either to GND or to VREF surely.

(8) Under voltage lockout circuit (UVLO)

The IC contains a under voltage lockout circuit to protect the circuit from the damage caused by malfunctions when the supply voltage drops. When the supply voltage rises from OV , the IC starts to operate at Vcc of 3.3 V (typ.) and outputs generate pulses. If a drop of the supply voltage occurs, it stops output at Vcc of 3.2 V (typ.). When it occurs, the CS1 and CS3 pin are turned to low level and the CS2 pin to high level, and then these pins are reset.

9. Design Advice

(1) Setting the oscillation frequency

As described at Section 8-(2), "Description of Each Circuit," a desired oscillation frequency can be determined by the value of the resistor connected to the RT pin. When designing an oscillation frequency, you can set any frequency between 200 kHz and 800kHz. You can obtain the oscillation frequency from the characteristic curve "Oscillation frequency (fosc) vs. timing resistor resistance (RT)" or the value can be approximately calculated by the following expression.
fosc $=4.1 \times 10^{3} \times R T^{-0.905}$
$R_{T}=\left(\frac{4.1 \times 10^{3}}{f o s c}\right)^{1.105}$
fosc: oscillation frequency [kHz]
$R T$: timing resistor [k Ω]
This expression, however, can be used for rough calculation, the obtained value is not guaranteed. The operation frequency varies due to the conditions such as tolerance of the characteristics of the ICs, influence of noises, or external discrete components. When determining the values, examine the effectiveness of the values in an actual circuit. The timing resistor RT should be wired to the GND pin as shortly as possible because the RT pin is a high impedance pin and is easy affected by noises.

(2) Determining soft start period

The period from the start of charging the capacitor Ccs to widening $\mathrm{n} \%$ of output duty cycle can be roughly calculated by the following expression: (see Fig. 5 for symbols)

For CS1:
$t S_{1}[m s]=R_{C S 1} \cdot C \operatorname{CS} 1 \cdot \ln \left(\frac{V_{R E F}}{V_{R E F}-V_{C S 1 n}}\right)$
For CS2
$t S_{2}[\mathrm{~ms}]=R_{\text {CS2 }} \cdot \operatorname{Ccs} 2 \cdot \ln \left(\frac{V_{R E F}}{V_{\text {cs } 2 n}}\right)$
For CS3
$t \mathrm{~S}_{3}[\mathrm{~ms}]=R_{\operatorname{cs} 3} \cdot C_{C S 3} \cdot \ln \left(\frac{V_{R E F}}{V_{R E F}-V_{C S 3 n}}\right)$
Ccs1,Ccs2,Ccs3:
Capacitance connected to CS* pin $[\mu \mathrm{F}]$
RCS1,Rcs2,RCs3:
Resistance connected to CS* pin $[k \Omega]$
VCS*n represents the voltage of CS Pin in the output duty of $n \%$, and it changes according to the operation frequency. The value is obtained simply from the chart of "CS Pin voltage vs. output duty cycle" characteristic curves.
Charging of CS Pin begins after UVLO is cancelled. Note that the time from power-on of Power supply to start of charging Ccs^{*} is t 0 , which is not zero as described in Fig. 8. Be careful.

To reset the soft start function, the voltage of CS pin is discharged with internal switch triggered by lowering the voltage of Power supply below the voltage of UVLO (3.3V, typ.). If Power supply restarts before the voltage is sufficiently discharged, the soft start function might not properly operate. Accordingly, cautious care must be taken about it.

Fig. 9

(3) Setting the maximum output duty

If you need to control the maximum output duty in the DC-DC converter circuit, you can control pulse width by connecting VREF pin to CS pin divided with resistors, as described in Fig. 10. The output duty of the voltage of CS pin in this case changes according to the operation frequency, as described in the chart of "CS pin voltage vs. Duty cycle" characteristic curves. Set the output duty accordingly based on your required operation frequency.
When the maximum duty cycle is limited, CS pin voltage at start-up is described in Fig. 11, and the approximate value of soft start period can be obtained by the following expressions:

Fig. 10

Fig. 11
For CS1
$t s_{1}[m s]=R_{0} \cdot C c s 1 \cdot \ln \left(\frac{V c s 1}{V c s 1-V c s 1 n}\right)$
$R 0=\frac{R 1 \cdot R 2}{R 1+R 2} \quad V_{C S 1}=\frac{R 2}{R 1+R 2} \cdot V_{R E F}$
For CS2
$t s_{2}[m s]=R_{0} \cdot C \operatorname{cs2} \cdot \ln \left(\frac{V_{\text {REF }}-V_{C S 2}}{V_{\text {Cs } 2 n}-V_{C S 2}}\right)$
$R 0=\frac{R 3 \cdot R 4}{R 3+R 4} \quad V_{C S 2}=\frac{R 3}{R 3+R 4} \cdot V_{R E F}$

For CS3
$t s_{3}[m s]=R_{0} \cdot \operatorname{Ccs3} \cdot \ln \left(\frac{V \operatorname{cs3}}{V \operatorname{cs3}-V \operatorname{cs} 3 n}\right)$
$R 0=\frac{R 5 \cdot R 6}{R 5+R 6} \quad V_{C S 3}=\frac{R 6}{R 5+R 6} \cdot V_{R E F}$

Ccs1,Ccs2,Ccs3:

Capacitance connected to CS* pin $[\mu \mathrm{F}]$
$R 1$ to R6: Resistance connected to CS^{*} pin $[\mathrm{k} \Omega$]
The output duty changes sharply around the minimum and the maximum output duty. This phenomenon occurs more conspicuously when operating in a high frequency (i.e. when the pulse width is narrow). Cautious care must be taken when using high frequency.

(4) Pull-up/Pull-down resistor at the output section

The power supply for control blocks of OUT pin drivers is the VREF. The VREF voltage is not operated at the condition of IC's power supply VCC below the UVLO voltage. Therefore, OUT* pins are unstable at VCC below the UVLO voltage.

If you have this condition of VCC and possibility of some trouble by unstable OUT* pins, connect pull up or pull down resistor to OUT* pins. (Fig.12)

For Nch driven

For Pch driven

(5) Restriction and recommended operating conditions of external discrete component

To achieve a stable operation of the IC, the value of external discrete components connected to VCC, PVCC, VREF, CS, CP pins should be within the recommended operating conditions. And the voltage and the current applied to each pin should be also within the recommended operating conditions.
If the pin voltage of OUT1, OUT2, or VREG becomes higher than the VCC pin voltage, the current flows from the pins to the VCC pin because parasitic three diode exist between the VCC pin and these pins. Be careful not to allow this current to flow.

(6) Performance of output stage

The performance of output stages is the sink current (peak) of 800 mA of and the source current (peak) of -800 mA .

Switching speed is effected by external switching device, especially at high frequency, so examine the external switching device and frequency carefully.
If the performance of the ICs is not sufficient for your design, consider adding a buffer circuit to improve the performance.

(7) Loss Calculation

Since it is difficult to measure IC loss directly, the calculation to obtain the approximate loss of the IC connected directly to a MOSFET is described below.
When the supply voltage is Vcc, the current consumption of the IC is ICCOP, the total input gate charge of the driven MOSFET is Qg and the switching frequency is fsw, the total loss Pd of the IC can be calculated by:
Pd \fallingdotseq Vcc*(Iccop+Qg*fsw).
The value in this expression is influenced by the effects of the dependency of supply voltage, the characteristics of temperature, or the tolerance of parameter. Therefore, evaluate the appropriateness of IC loss sufficiently considering the range of values of above parameters under all conditions.

Example)
ICCOP $=7 \mathrm{~mA}$ for VCC=12V in the case of a typical IC from the characteristics curve. $\mathrm{Qg}=10 \mathrm{nC}$, $\mathrm{fsw}=560 \mathrm{kHz}$, the IC loss "Pd" is as follows.
$\mathrm{Pd} \fallingdotseq 12^{*}(7 \mathrm{~mA}+10 \mathrm{nC} * 560 \mathrm{kHz}) \fallingdotseq 151 \mathrm{~mW}$
if two MOSFETs are driven under the same condition for 3 channels, Pd is as follows:
$\mathrm{Pd} \fallingdotseq 12^{*}\left\{7 \mathrm{~mA}+3^{*}\left(10 \mathrm{nC}{ }^{*} 560 \mathrm{kHz}\right)\right\}=286 \mathrm{~mW}$

Fig. 12
(8) Attention for driving bipolar transistor

If you use bipolar transistor as a switching device, connect resistor R_{B} between Base of transistor and OUT* pin, else there is a possibility of destroy the IC by over current because OUT* pin driver does not contain a current limit resistor. (Fig.13) Output current of OUT* pins are below 40 mA (continuous).
The connection of capacitor C_{B} is effective for speed up the switching.

(9) ON/OFF control

ON/OFF control using CS pin is not available when timer latch function is enable. In order to carry out ON/OFF control with CS pin, CP pin should be connected to GND so that timer latch function will be disable as shown in Fig. 14.
For ch. 1 and ch.3, output pulses are disabled by lowering CS pin voltage around zero. Ch. 1 is controlled by CS1 pin and ch. 3 is controlled by CS3. For ch.2, pulling up CS2 pin voltage to VREF voltage disables output pulses.
Each channel will re-start operation with soft-start function when CS pin is opened.

Fig. 15 shows ON/OFF control method for Ch. 1 and Ch. 3 when timer latched short protection is used for all channels.
Please take care of that Ch. 2 is not suitable for ON/OFF control, because the error amplifier of Ch. 2 sinks large current (much larger than 2.7 mA) for High Voltage of FB2 pin to stop switching of OUT2 pin.
The calculation example of ON/OFF circuit in Fig. 15 is as follows.

VREF -> CS1 maximum current " Ics1max "
$=$ VREF / R18 (ex. 3.7V / 100k ohm = 37uA)
VREF -> CS3 maximum current " Ics3max "
$=$ VREF / R38 (ex. 3.7V / 100k ohm = 37uA)
Error Amp. Output Source Current "IsofB "
$=185 \mathrm{uA}$ (typ.) for FB1 pin and FB3 pin

The base current ratio of QFB* and Qcs* should be same as the collector current ratio for each channel. (above case : collector current ratio = 185 / 37 = 5 -> Base resistor ratio $=$ R56 $/ R 55=R 53 / R 52=5$)

Base resistor voltage drop should be larger than 300 mV in order to obtain good sharing of base current for QFB* and Qcs*.
Here, assuming hFE less than 100 of $Q^{* *}$, each base current are over 1.85 uA and over 0.37 uA .

If R57 and R58 values to flow current over
($1.85 u \mathrm{~A}+0.37 \mathrm{uA}$) are designed and

R55 $=$ R52 $=200 \mathrm{k}$ ohm and R56 $=$ R53 $=1 \mathrm{M}$ ohm are selected, base resistor voltage of R52, R53, R55 and R56 are over 370 mV and these satisfy " 300 mV condition ". Therefore, this condition achieves normal transistor operation.

Resistance of R57 and R58 should be smaller than 20% of above condition in order to obtain small hFE of " 20 " which achieves low saturation voltage of $Q^{* *}$. In this case, if $\mathrm{Vcc}=17 \mathrm{~V}$ (min.) and voltage drop of R57 and R58 $=\mathrm{Vcc}-2 \mathrm{~V}$,

R57 or R58

$$
\begin{aligned}
& <20 \% \text { * }(17 \mathrm{~V}-2 \mathrm{~V}) /(1.85 \mathrm{uA}+0.37 \mathrm{uA}) \\
& =1.35 \mathrm{M} \text { ohm }
\end{aligned}
$$

Fig. 13

Fig. 14
Timer latched Short Protection : not available

Fig. 15 ON/OFF Circuit
Note : Channel 2 to control OUT2 pin is not suitable for ON/OFF control.

QA1, QA3:

Assuming base voltage as 0.9 V (max.),
R59, R60, R61 and R62 should be designed so that the base current are larger than each collector current /
20.

Here, 20 means fully small hFE in order to obtain low saturation voltage of QA*.

R51, R54 :

The voltage drop should be lower than 0.5 V at FB1 pin or FB3 pin to obtain 0% duty for ON mode of QFB*.
ex. R51 * IsOFB $=1 \mathrm{k}$ ohm * 185 uA

$$
\begin{aligned}
& =0.185 \mathrm{~V} \\
& <0.5 \mathrm{~V}
\end{aligned}
$$

(10) Setting of the output voltage of DC-DC converter

Figure $16,17,18$ shows the ways to set each channel of the output voltage of DC-DC converter.

- Applications for each channels

Ch1	Buck, Inverting
Ch2	Buck, Boost, Inverting, Fly-back
Ch3	Buck, Boost, Inverting, Fly-back

In the case of a boost, a buck, or a fly-back circuit, the output voltage can be calculated with:

For Ch1 (Fig.16,Fig.17)

$$
\text { Vout } 1=\frac{R 10+R 11}{R 11} \times V 1
$$

For Ch2 (Fig.17,Fig.18)

$$
\text { Vout } 2=\frac{R 20+R 21}{R 21} \times V 2
$$

For Ch3 (Fig.16,Fig.18)

$$
\text { Vout3 }=\frac{R 30+R 31}{R 31} \times V 3
$$

An inverting circuit, the output voltage can be calculated with:

For Ch1 (Fig.18)

$$
\text { Vout } 1=\frac{R 10+R 11}{R 10} \times V 1-\frac{R 11}{R 10} \times V_{R E F}
$$

For Ch2 (Fig.16)

$$
\text { Vout } 2=\frac{R 20+R 21}{R 20} \times V 2-\frac{R 21}{R 20} \times V_{R E F}
$$

For Ch3 (Fig.17)

$$
\text { Vout } 3=\frac{R 30+R 31}{R 30} \times V 3-\frac{R 31}{R 30} \times V_{R E F}
$$

The ratio of resistance can be calculated with:

$$
\frac{R 10}{R 11}=\frac{V_{R E F}-V_{1}}{V_{o u t}+V_{1}}
$$

(Use the absolute value of Vout voltage)
(The same Vout2 and Vout3 as Vout1)

(11) Protection from negative voltage apply

If rather large negative voltage is applied to any pins of this IC, internal parasitic elements start operating, and they may cause malfunctions. Accordingly, the negative voltage, which is applied to each Pin of the ICs, must be kept above -0.3 V .
In the case of the OUT* pin, in particular, the oscillation of voltage occurring after MOSFET's turning off can be applied to the OUT* pin through MOSFET's parasitic capacitance. As a result, there is a possibility that the negative voltage is applied to the OUT* pin. If this negative voltage reaches -0.3 V or below, connect an Schottky barrier diode between OUT* pin and GND as shown in Fig. 21. The Schottky barrier diode's forward direction voltage clamps the voltage applied to the OUT* pin. In this case, use the Schottky barrier diode with low voltage drop in forward direction. Other pins should be kept above -0.3 V also based on the same reasons.

In the case of an inverting circuit, the negative voltage charged on the output capacitor will be applied to VREF pin just after turning off the input voltage.
If input voltage is turned on during applying a negative voltage to VREF pin, the negative voltage may lead malfunction.
This problem is likely to occur in the case of short interruption.
In such a case, re-start the converter after the output capacitor is discharged enough or connect a schottky barrier diode with low forward voltage between VREF pin and GND as shown in Fig. 20.

Fig. 19

Fig. 20
(12) An error pulse at start up

At start up, if rise time of VCC and PVCC pin is too short, an error pulse, which is several tens $\mu \mathrm{s}$ of width, may appear on the OUT pin.
The Internal circuit of IC is not stable before VREF pin voltage rises to about 1 V . Therefore, It may cause an error pulses that a voltage is applied to PVCC pin before VREG pin voltage raises enough at start up.
The error pulse may appear when Vcc rise time from 0 V to 12 V is less than about a few hundred $\mu \mathrm{s}$.
In such a case, check the influence of the error pulse such as blowout of a fuse.
On the other hand, if rise time of Vcc is not so short, the error pulse will not appear.

Fig. 21

(13) Design of phase compensation

A switching power supply supervises output voltage with error amplifier, constitutes a closed loop, and is stabilizing voltage by negative feedback.

Phase delay with a smoothing filter and Gain with the main switching device, etc. is contained in the negative feedback circuit, and those sum totals become the phase and the gain in a closed loop.

The phase and the gain have the frequency characteristic. In a negative feedback circuit, if the gain remains OdB or more at the frequency of 180 degrees delayed phase, a circuit will be oscillated.

In order to prevent oscillation, it is necessary to adjust the phase and the gain of error amplifier. (Fig.22) Since especially the switching power supply has repeated ON and OFF at high speed, the minute high frequency element is contained in the output, and if you setup the frequency characteristic of the error amplifier beyond necessity, it has a possibility of unstable operate and oscillate.

The gain when the phase turns 180 degrees calls gain margin, the phase when the gain becomes 0dB calls phase margin. Above 10 dB of gain margin and above 50 degrees of phase margin are desirable generally and set to this condition in phase compensation. (Fig.22)

However, gain margin and phase margin against transient response (sudden change of load, etc.) are participate as trade-off, therefore when gain margin and phase margin is larger, transient response becomes margin-less condition, furthermore over shoot and under shoot of converter voltage is larger.

To determine the value of circuit components, it cannot decide here since conditions change a lot with the value of an output filter or others, but generally adjust the value between $1 \mathrm{k} \Omega$ and $100 \mathrm{k} \Omega$ of resistor $R_{F B}$ and the value between 1 nF and 100 nF of capacitor C_{FB}. However the operation of switching power supply changes by load condition, duty cycle, temperature, etc., so when determine the value of components, examine with the real load condition in actual circuit.

Fig. 22

Fig. 23
10. Application circuit

Obtained values are not guaranteed.
When determining values and external discrete components, examine under the actual circuit condition.

