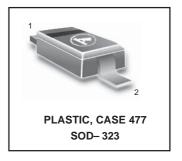


Silicon Epicap Diode

Designed for general frequency control and tuning applications; providing solid–state reliability in replacement of mechnaical tuning methods.


- High Q with Guaranteed Minimum Values at VHF Frequencies
- Controlled and Uniform Tuning Ratio
- Surface Mount Package
- Device Marking: 4A

ORDERING INFORMATION

Device	Package	Shipping
MMVL109T1	SOD-323	3000 / Tape & Reel

MMVL109T1

26–32 pF VOLTAGEVARIABLE CAPACITANCEDIODES

MAXIMUM RATINGS

Symbol	Rating	Value	Unit	
V _R	Continuous Reverse Voltage	30	Vdc	
I _F	Peak Forward Current	200	mAdc	

THERMAL CHARACTERISTICS

Symbol	Characteristic	Max	Unit
P _D	Total Device Dissipation FR-5 Board,*	200	mW
	$T_A = 25$ °C		
	Derate above 25°C	1.57	mW/°C
R _{eJA}	Thermal Resistance Junction to Ambient	635	°C/W
T_J, T_{stg}	Junction and Storage Temperature Range	-55 to +150	°C

^{*}FR-5 Minimum Pad

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Reverse BreakdownVoltage	$V_{(BR)R}$	30	_	_	Vdc
$(I_R = 10 \mu Adc)$					
Reverse Voltage Leakage Current	I_{R}	_	_	0.1	μAdc
(V _R = 25 Vdc)					
Diode Capacitance Temperature Coefficient	TC_{C}	_	300	_	ppm/°C
$(V_R = 3.0 \text{ Vdc}, f = 1.0 \text{ MHz})$					

	C _t , Diode Capacitance V _R = 3.0 Vdc, f = 1.0 MHz pF		Q, Figure of Merit $V_R = 3.0 \text{ Vdc}$		tance Ratio /C ₂₅	
			f = 50 MHz	f = 1.0 MHz(Note 1)		
Device	Min	Nom	Max	Min	Min	Max
MMVL109T1	26	29	32	200	5.0	6.5

^{1.} $\rm C_R$ is the ratio of $\rm C_t$ measured at 3 Vdc divided by $\rm C_t$ measured at 25 Vdc.

MMVL109T1

TYPICAL CHARACTERISTICS

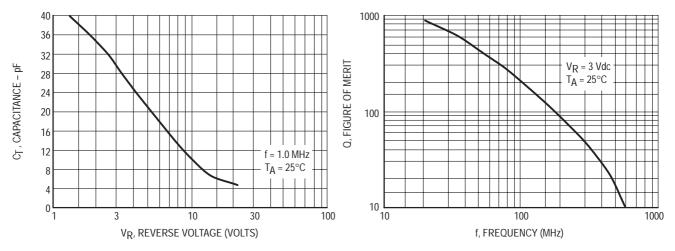


Figure 1. DIODE CAPACITANCE

Figure 2. FIGURE OF MERIT

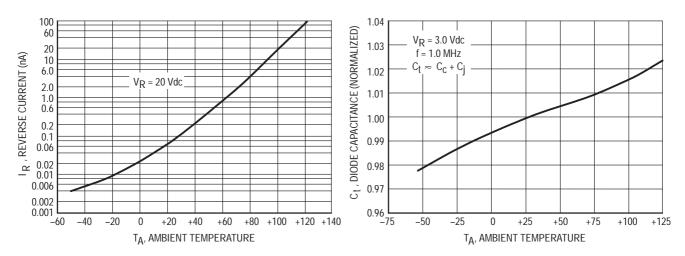


Figure 3. LEAKAGE CURRENT

Figure 4. DIODE CAPACITANCE

NOTES ON TESTING AND SPECIFICATIONS

1. C_R is the ratio of C_t measured at 3.0 Vdc divided by C_t measured at 25 Vdc.