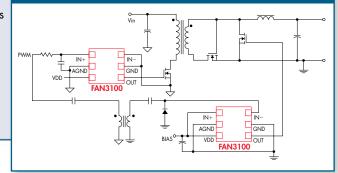
High-Speed, Low-Side Gate Drivers

Fairchild's Offering

AIRCHIL SEMICONDUCTOR


The FAN3000 series low-side gate drivers offer an unequaled combination of higher performance smaller size, and more input options for driving N-channel power MOSFETs and IGBTs:

- Industry's smallest packages (2×2 and 3×3mm MLP)
- Choice of TTL or CMOS input thresholds for all devices for best compatibility
- 2 inputs for each channel for design flexibility: either Dual-input (+ and logic), Inverting and Enable, or Non-inverting and Enable
- Short and well-controlled time delays for 1MHz+ switching, paralleling drivers, and optimizing drive timing to maximize efficiency
- Part of Fairchild's total silicon solution for power supplies, backed by the Global Power Resource™, a worldwide network of power supply design experts

40 different devices provide choices of 2A, 4A or 9A current ratings in single or dual-channel versions. In addition to the specifications below, these drivers deliver fast switching and accurate timing to maximize efficiency in high frequency power converter designs.

- MillerDrive[™] architecture for the output stage, a bipolar–MOSFET combination that provides the highest current during the Miller plateau of the MOSFET switching transition to minimize switching losses
- Fail-Safe Inputs to hold the output low if an input signal is absent
- Under-Voltage Lockout for predictable startup
- "Enable" inputs which default to "ON" if not connected
- Industry-standard pin-outs
- Thermal pads for heat removal (MLP packages)
- Lead(Pb)-free finish

Forward Converter with Hybrid Synchronous Rectifier

Typical Applications

- Switch-Mode Power Supplies
- Line Drivers
- Synchronous Rectifier Circuits
- DC–DC Power Converters
- Digital Audio Amplifiers
- Any switching power MOSFET or IGBT

Specifications for All*

Parameter	Value		
V _{DD} to GND, abs max	20V		
Recommended V _{DD} range	4.5V – 18V		
Junction Temperature, abs max	150°C		
Recommended ambient temperature	–40°C – 125°C		
UVLO Turn-ON voltage	4V		
Output propagation delay	<20ns		
Propagation matching between channels	<2ns		

Specifications by Current Rating*

Parameter	2 A	4A	9A**
Mid-voltage sink current/channel (Amps)	2.5	4.3	9
Mid-voltage source current/channel (Amps)	1.7	2.8	6
Peak sink current/channel (Amps)	3	5	12
Peak source current/channel (Amps)	3	5	10
Quiescent current, inputs disconnected (mA)	0.7	0.7	1.0
Output rise/fall time (ns) for [load capacitance, nF]	13/9 [1]	12/9 [2.2]	20/18 [10]
Output reverse current withstand (mA)	500	500	1500

Typical values unless noted, VDD = 12V, TJ = -40° C to 125°C In development

© 2007 Fairchild Semiconductor, All Rights Reserved

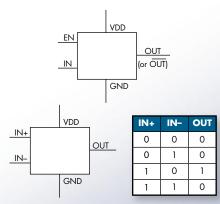
High-Speed, Low-Side Gate Drivers

Selection Guide

Channels	Current	Inputs per Channel	Gnd Pins	Package	R _{₀JL} (°C/W)	Part Number (a)	
Single 24	2A	Dual-input (+ and –)	2	SOT23-5	55	FAN3100xSX	
			2, 5	2x2mm MLP-6	3	FAN3100×MPX	
Dual (b)	2A	Inverting and Enable	3	SOIC-8	39	FAN3226×MX	
				3x3mm MLP-8	2	FAN3226×MPX	
		Non-inverting and Enable		SOIC-8	39	FAN3227×MX	
				3x3mm MLP-8	2	FAN3227×MPX	
		Dual-input (+ and -)		SOIC-8	39	FAN3228×MX	
				3x3mm MLP-8	2	FAN3228×MPX	
		Dual-input	8	SOIC-8	39	FAN3229×MX	
			(+ an	(+ an		3x3mm MLP-8	2
Dual	4A		ng e t	SOIC-8	37	FAN3223×MX	
		and Enable		3x3mm MLP-8	1	FAN3223×MPX	
		Non-inverting and Enable		SOIC-8	37	FAN3224×MX	
				3x3mm MLP-8	1	FAN3224×MPX	
		Dual-input (+ and -)		SOIC-8	37	FAN3225×MX	
				3x3mm MLP-8	1	FAN3225×MPX	
Single	9A**	A** Inverting and Enable		SOIC-8	37	FAN3121×MX	
				3x3mm MLP-8	1	FAN3121×MPX	
		Non-inverting		SOIC-8	37	FAN3122×MX	
		and Enable		3x3mm MLP-8	1	FAN3122×MPX	

(a) x = C or T for CMOS or TTL input thresholds (b) Channels may be paralleled to obtain a single 4A driver ** In development

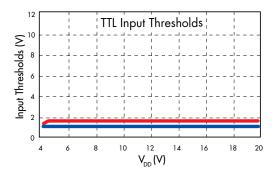
Current Rating


... is selected to achieve a desired switching time and switching loss for the total gate charge Q_G of the power switch. For each driver current rating, the table to the right shows the approximate minimum turn-on or turnoff time assuming no series gate-drive resistance $(t_{SW,MIN} = (Q_G/I_{RATED}) \times 1.5$, an empirical constant).

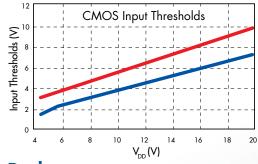
Input Configuration

Single Input plus Enable

- Inverting and Enable
- Non-inverting and Enable
- Enable defaults to high = ON **Dual Input**
- Inverting operation using IN-(with IN+ held high)
- Non-inverting operation using IN+ (with IN- held low)
- Other input can be Enable


	Min. Switching Time (ns)				
Q _G	for Driver Current Rating				
(nC)	2A	4A	9A**		
5	3.8				
10	7.5	3.8			
20	15	7.5	3.3		
50	38	19	8.3		
100	75	38	17		
200	150	75	33		
500	375	188	83		
1000	750	375	167		
** In development					

Input Thresholds


TTL (0.8V, 2.0V)

- For logic-level input signals, e.g., 3.3V or 5V
- For constant input thresholds as V_{DD} varies
- Most common choice

CMOS (~40% and 60% of V_{DD})

- For noisy environments
- For ease of adding R-C time delays at driver input
- For input thresholds proportional to V_{DD}

Package

Select for a maximum junction-to-lead thermal resistance of:

$$R_{\theta JL, MAX} = \frac{T_{J, MAX, OP} - T_{L, MAX, OP}}{P_{PKG} F_{PCB}}$$

where:

- $T_{J, MAX, OP}$ = maximum operating junction temperature ≤150°C
- T_{L, MAX, OP} = maximum operating lead temperature ≤ maximum PCB temperature
- P_{PKG} = average power dissipated in the package = $V_{DD}Q_{G}f_{SW}$ minus the dissipation in the series gate resistance = $I_{G, RMS}^{2}R_{G}$ (difficult to estimate)
- F_{PCB} = fraction of P_{PKG} that flows into the PCB, e.g., 0.9