

AK8857VQ Dual Channel Digital Video Decoder

Overview

The AK8857VQ is a single-chip digital video decoder for composite and s-video video signals. In case of composite video signal, it can decode two inputs at the same time. Its output data is in YCbCr format, compliant with ITU-R BT.601. Its output interface is ITU-R BT.656 compliant. A simple IP conversion function is built internally and the output pixel size also can easily be changed using this function. The operating temperature range is -40° C to 85° C. The package is 64-terminal LQFP.

Features

- Decodes two inputs of composite video signals NTSC (J, M, 4.43), PAL (B, D, G, H, I, M, N, Nc, 60), SECAM at the same time.
- Decodes S-video video signals NTSC (J, M, 4.43), PAL (B, D, G, H, I, M, N, Nc, 60), SECAM.
- Four input channels, with internal video switch.
- 11-bit 54Mhz ADC 1 channel.
- Digital PGA.
- Adaptive automatic gain control (AGC).
- Auto Color Control (ACC)
- Simple IP conversion function (Line repeating process).
- · Image adjustment (contrast, saturation, brightness, hue, sharpness).
- Automatic input signal detection.
- Adaptive 2-D Y/C separation.
- · ITU-R BT.656 and ITU-R BT.601 format output (with 4:2:2_8 bit parallel_EAV/SAV).
- · Supported output pixel size : 720x487, 720x576, WVGA, VGA, WQVGA, QVGA
- · SYNC signal timing for external output : HSYNC/HACT, VSYNC/VACT, FIELD, DVALID
- · Closed-caption signal decoding (output via register).
- · VBID(CGMS-A) signal decoding (CRCC decode) (output via register).
- · WSS signal decoding (output via register).
- Power down function.
- I²C control.
- 1.70~2.00 V core power supply.
- 1.70~3.60 V interface power supply.
- Operating temperature range: -40°C to 85°C.
- 64-pin LQFP package.

*Because the data is sampling to a fixed clock, it may not fullfilled the ITU-R BT.656 standard interface.

1.Functional Block Diagram

In this specification, the output pins above the DTCLK pin on the right side of this block diagram is called [A BLOCK] and the output pins below the DTCLK pin is called [B BLOCK].

2.Pin assignment – 64 pins LQFP

3.Pin Functions

Pin No.	Symbol	P/S ¹	I/O ²	Functional Description
1	AIN1	А	1	Analog video signal input pin. Connect via 0.033 μ F capacitor and voltage-splitting resistors as shown in page 121. If it is not used, connect to NC.
2	AVDD	А	Р	Analog ground pin.
3	AIN2	А	I	Analog video signal input pin. Connect via 0.033 μ F capacitor and voltage-splitting resistors as shown in page 121. If it is not used, connect to NC.
4	AVSS	А	G	Analog ground pin.
5	AIN3	А	I	Analog video signal input pin. Connect via 0.033 μ F capacitor and voltage-splitting resistors as shown in page 121. If it is not used, connect to NC.
6	AVDD	А	Р	Analog ground pin.
7	AIN4	A	I	Analog video signal input pin. Connect via 0.033 μ F capacitor and voltage-splitting resistors as shown in page 121. If it is not used, connect to NC.
8	AVSS	А	G	Analog ground pin.
9	DVSS	D	G	Digital ground pin.
10	PVDD1	P1	Р	I/O power supply pin.
11	DATA_A0	P1	0 (1)	A block data output pin. Used as I/O pin in Test Mode. See Table below for relation of output to OE_A, PDN and RSTN pin status.
12	DATA_A1	P1	0 (1)	A block data output pin. Used as I/O pin in Test Mode. See Table below for relation of output to OE_A, PDN and RSTN pin status.
13	DATA_A2	P1	0 (1)	A block data output pin. Used as I/O pin in Test Mode. See Table below for relation of output to OE_A, PDN and RSTN pin status.
14	DATA_A3	P1	0 (1)	A block data output pin. Used as I/O pin in Test Mode. See Table below for relation of output to OE_A, PDN and RSTN pin status.
15	DATA_A4	P1	0 (1)	A block data output pin. Used as I/O pin in Test Mode. See Table below for relation of output to OE_A, PDN and RSTN pin status.
16	DATA_A5	P1	0 (1)	A block data output pin. Used as I/O pin in Test Mode. See Table below for relation of output to OE_A, PDN and RSTN pin status.
17	DVDD	D	Р	Digital power supply pin.
18	DVSS	D	G	Digital ground pin.
19	PVDD1	P1	Р	I/O power supply pin.
20	DATA_A6	P1	0 (1)	A block data output pin. Used as I/O pin in Test Mode. See Table below for relation of output to OE_A, PDN and RSTN pin status.

Pin No.	Symbol	P/S ¹	I/O ²	Functional Description
21	DATA_A7	P1	0 (1)	A block data output pin. Used as I/O pin in Test Mode. See Table below for relation of output to OE_A, PDN and RSTN pin status.
22	VD_ACT_A	P1	0 (1)	A block VD(Vertical Drive) / VACT(Vertical Active) signal output pin. VD signal output / VACT signal output can be selected by register setting. Used as I/O pin in Test Mode. See Table below for relation of output to OE_A, PDN and RSTN pin status.
23	HD_ACT_A	P1	0 (1)	A block HD(Horizontal Drive) / HACT(Horizontal Active) signal output pin. HD signal output / HACT signal output can be selected by register setting. Used as I/O pin in Test Mode. See Table below for relation of output to OE_A, PDN and RSTN pin status.
24	DVALID_A	P1	0 (1)	A block DVALID signal output pin. Used as I/O pin in Test Mode. See Table below for relation of output to OE_A, PDN and RSTN pin status.
25	FIELD_A	P1	0 (1)	A block FIELD signal output pin. Used as I/O pin in Test Mode. See Table below for relation of output to OE_A, PDN and RSTN pin status.
26	PVDD1	P1	Р	I/O power supply pin.
27	DTCLK	P1	0	Data clock output pin. Approx. 27 MHz clock output. See Table below for relation of output to OE_A, OE_B, PDN and RSTN pin status.
28	FIELD_B	P1	0 (1)	B block FIELD signal output pin. Used as I/O pin in Test Mode. See Table below for relation of output to OE_B, PDN and RSTN pin status.
29	DVALID_B	P1	0 (1)	B block DVALID signal output pin. Used as I/O pin in Test Mode. See Table below for relation of output to OE_B, PDN and RSTN pin status.
30	HD_ACT_B	P1	O (1)	 B block HD(Horizontal Drive) / HACT(Horizontal Active) signal output pin. HD signal output / HACT signal output can be selected by register setting. Used as I/O pin in Test Mode. See Table below for relation of output to OE_B, PDN and RSTN pin status.
31	VD_ACT_B	P1	O (1)	B block VD(Vertical Drive) / VACT(Vertical Active) signal output pin. VD signal output / VACT signal output can be selected by register setting. Used as I/O pin in Test Mode. See Table below for relation of output to OE_B, PDN and RSTN pin status.

Pin No.	Symbol	P/S ¹	I/O ²	Functional Description
32	DATA_B7	P1	0 (1)	B block data output pin. Used as I/O pin in Test Mode. See Table below for relation of output to OE_B, PDN and RSTN pin status.
33	DVSS	D	G	Digital ground pin.
34	PVDD1	P1	Р	I/O power supply pin.
35	DATA_B6	P1	0 (1)	B block data output pin. Used as I/O pin in Test Mode. See Table below for relation of output to OE_B, PDN and RSTN pin status.
36	DATA_B5	P1	0 (1)	B block data output pin. Used as I/O pin in Test Mode. See Table below for relation of output to OE_B, PDN and RSTN pin status.
37	DATA_B4	P1	0 (1)	B block data output pin. Used as I/O pin in Test Mode. See Table below for relation of output to OE_B, PDN and RSTN pin status.
38	DATA_B3	P1	0 (1)	B block data output pin. Used as I/O pin in Test Mode. See Table below for relation of output to OE_B, PDN and RSTN pin status.
39	DATA_B2	P1	0 (1)	B block data output pin. Used as I/O pin in Test Mode. See Table below for relation of output to OE_B, PDN and RSTN pin status.
40	DATA_B1	P1	0 (1)	B block data output pin. Used as I/O pin in Test Mode. See Table below for relation of output to OE_B, PDN and RSTN pin status.
41	DATA_B0	P1	0 (1)	B block data output pin. Used as I/O pin in Test Mode. See Table below for relation of output to OE_B, PDN and RSTN pin status.
42	PVDD1	P1	Р	I/O power supply pin.
43	DVSS	D	G	Digital ground pin.
44	DVDD	D	Р	Digital power supply pin.
45	TEST0	P2	I	Pin for test mode setting. Connect to DVSS.
46	TEST1	P2	I	Pin for test mode setting. Connect to DVSS.
47	NSIG_B	P2	0 (1)	Shows status of synchronization with input signal of B block.Low: Signal present (synchronized).High: Signal not present or not synchronized.See Table below for relation of output to OE_B, PDN, RSTN pin status.
48	NSIG_A	P2	0 (1)	Shows status of synchronization with input signal of A block. Low: Signal present (synchronized). High: Signal not present or not synchronized. See Table below for relation of output to OE_A, PDN, RSTN pin status.

Pin No.	Symbol	P/S ¹	I/O ²	Functional Description						
				B block Output Enable pin.						
40		P2	1	L: Digital output pin in Hi-z output mode.						
-5	OL_D	12		H: Data output mode.						
				Hi-z input to OE_B pin is prohibited.						
				A block Output Enable pin.						
50	OF A	P2	1	L: Digital output pin in Hi-z output mode.						
00	OE_A P2 I			H: Data output mode.						
				Hi-z input to OE_A pin is prohibited.						
51	PVDD2	P2	Р	Microprocessor I/F power supply pin.						
				Reset signal input pin.						
52	RSTN	P2	1	Hi-z input is prohibited.						
02	No III	12	1	L: Reset.						
				H: Normal operation.						
				Power-down control pin.						
53		P2	1	Hi-z input is prohibited.						
55		12	•	L: Power-down.						
				H: Normal operation.						
				I ² C data pin. Connect to PVDD2 via a pull-up register.						
54	54 SDA P2 I/O			Hi-z input possible when RSTN=L.						
				Will not accept SDA input during reset sequence.						
				I ² C clock input pin. Use PVDD2 or lower for input.						
55	55 SCL P2 I		1	Hi-z input possible when PDN=L.						
				Will not accept SCL input during reset sequence.						
				I ² C bus address selector pin.						
56	SELA	P2		PVDD2 connection: Slave address [0x8A]						
			(0)	DVSS connection: Slave address [0x88]						
57	AVDD	А	Р	Analog power supply pin.						
				Crystal connection pin.						
				Connect to digital ground via 22 pF capacitor as shown in Sec. 10.						
58	ХТО	А	0	Use 24.576 MHz crystal.						
				When PDN=L, output level is DVSS.						
				If crystal is not used, connect to NC or DVSS.						
59	AVSS	А	G	Analog ground pin.						
				Crystal connection pin.						
60	УTI	Δ		Connect to digital ground via 22 pF capacitor as shown in Sec. 10.						
00				Use 24.576 MHz crystal resonator.						
				For input from 24.576 MHz crystal oscillator, use this pin.						
61	VRN	Δ	0	Internal reference negative voltage pin for AD converter.						
	VINN	^		Connect to AVSS via ≥0.1 µF ceramic capacitor.						
62		^		Reference current setting pin.						
02				Connect to ground via 6.8 kΩ (≤1% accuracy) resistor.						

Pin No.	Symbol	P/S ¹	I/O ²	Functional Description				
63	VRP	А	0	Internal reference positive voltage pin for AD converter. Connect to AVSS via ≥0.1 µF ceramic capacitor.				
64	VCOM	А	0	Common internal voltage for AD convertor. Connect to AVSS via ≥0.1 µF ceramic capacitor.				

¹Power supply A: AVDD, D: DVDD, P1: PVDD1, P2: PVDD2

²Input/Output O: output pin, I: intput pin, I/O:input/output pin, P: power supply pin,G:ground connection pin.

Output pin status as determined by OE_A, OE_B, PDN, and RSTN pin status.

OE_A, OE_B (*2)	PDN	RSTN	Output1 (*2)	Output2 (*2)
L	х	х	Hi-Z output	L output
Н	L	х	L output	L output
		L	L output	L output
п	п	Н	Default Data Out (*3)	Default Data Out (*3)

²Output1:

(A Block) DATA_A[7:0], HD_ACT_A, VD_ACT_A, DVALID_A, FIELD_A (B Block) DATA_B[7:0], HD_ACT_B, VD_ACT_B, DVALID_B, FIELD_B

DTCLK.

If OE_A and OE_B both are in Low condition, the DTCLK pin output is Hi-Z.

Output2: NSIG_A, NSIG_B

If (OE_A=H or OE_B=H) and PDN=H just after power is turned on, output pin status will be indefinite until internal state is determined by reset sequence.

³In the absence of AIN signal input, output will be black data ((Y=0x10, Cb/Cr=0x80). (Blueback output can be obtained by register setting.)

4. Electrical specifications

(1) Absolute maximum ratings

Parameter	Min	Max	Units	Notes
Supply voltage				
AVDD, DVDD,	-0.3	2.2	V	
PVDD1, PCDD2	-0.3	4.2	V	
Analog input pin voltage A	-0.3		V	
(VinA)	-0.5	AVDD + 0.3(= 2.2)	v	
Digital output pin voltage P1	-0.3		V	(*1)
(VioP1)	-0.3	FVDD1+0.3 (\$4.2)	v	(1)
Digital output pin voltage P2	-0.3		V	(*2)
(VioP2)	-0.3	PVDD2 + 0.3 (\(\24.2)	v	(2)
Input pin current (lin)	-10	10	m۸	
(except for power supply pin)	-10	10	ША	
Storage temperature	-40	125	°C	

*The above supply voltages are referenced to ground pins (DVSS=AVSS) at 0 V (the Reference Voltage).

All power supply grounds (AVSS, DVSS) should be at the same electric potential.

If digital output pins are connected to data bus, the data bus operating voltage should be in the same range as shown above for the digital output pin.

(*1) DATA_A[7:0], HD_ACT_A, VD_ACT_A, DVALID_A, FIELD_A,

DATA_B[7:0], HD_ACT_B, VD_ACT_B, DVALID_B, FIELD_B, DTCLK.

(*2) OE_A, OE_B, SELA, PDN, RSTN, SDA, SCL, NSIG_A, NSIG_B, TEST0, TEST1.

(2) Recommended operating conditions

Parameter	Min	Тур	Max	Units	Condition
Analog supply voltage (AVDD)	1 70	1 90	2.00	V	
Digital supply voltage (DVDD)	1.70	1.80	2.00	v	AVDD=DVDD
I/O supply voltage (PVDD1)	1 70	1 90	2.60	V	PVDD1≥DVDD
MPU I/F supply voltage (PVDD2)	1.70	1.80	3.60	V	PVDD2≥DVDD
Operating temp. (Ta)	-40		85	°C	

The above supply voltages are referenced to ground pins (DVSS=AVSS) at 0 V (the Reference Voltage).

All power supply grounds (AVSS, DVSS) should be at the same electric potential.

(3) DC characteristics

Where no specific condition is indicated in the following table, the supply voltage range is the same as that shown for the recommended operating conditions in 4-2 above.

Parameter	Symbol	Min	Тур	Max	Units	Condition
Digital P2 input high		0.8PVDD2			V	Case *1
voltage	VPIH	0.7PVDD2			V	Case *2
Digital P2 input low				0.2PVDD2	V	Case *1
voltage	VFIL			0.3PVDD2	V	Case *2
Digital input leak current	IL			±10	uA	
Digital P1 output high voltage	VP10H	0.8PVDD1			V	IOH = -600uA
Digital P1 output low voltage	VP10L			0.2PVDD1	V	IOL = 1mA
Digital P2 output high voltage	VP2OH	0.8PVDD2			v	IOH = -600uA
Digital P2 output low voltage	VP2OL			0.2PVDD2	V	IOL = 1mA
I ² C (SDA)L output	VOLC			0.4 0.2 PVDD2	v	IOLC = 3mA PVDD2≥2.0V PVDD2<2.0V

*1: < DVDD = 1.70V~2.00V, DVDD≤PVDD1<2.70V, DVDD≤PVDD2<2.70V, Ta: -40~85°C > *2: < DVDD = 1.70V~2.00V, 2.70V≤PVDD1≤3.60V, 2.70V≤PVDD2≤3.60V, Ta: -40~85°C >

Definition of above input/output terms

Digital P2 input : Collective term for SDA, SCL, SELA, OE_A, OE_B, PDN, RSTN, TEST0, TEST1 pin inputs.

Digital P1 output : Collective term for DATA_A[7:0], HD_ACT_A, VD_ACT_A, DVALID_A, FIELD_A, DATA_B[7:0], HD_ACT_B, VD_ACT_B, DVALID_B, FIELD_B, DTCLK pin outputs.

Digital P2 output : Collective term for NSIG_A, NSIG_B pin outputs.

SDA pin output: Not termed digital pin output unless otherwise specifically stated.

(4) Analog characteristics (AVDD=1.8V, Temp.25°C)

Selector clamp

Parameter	Symbol	Min	Тур	Max	Units	Condition
Maximum input range	VIMX	0	0.50	0.60	V_{PP}	ADC output data is fullcode when input range is 0.6Vpp input.

AD converter

Parameter	Symbol	Min	Тур	Max	Units	Condition
Resolution	RES		11		bit	
Operating clock	F 0		27			
frequency	гэ		21			ADC.54MHz
Integral poplingerity	INII		12.0	+4.0		FS=27MHz,
Integral nonlinearity			±2.0	-4.0	LOD	Input range = 0.5Vpp
Differential peplinearity			10 F	+1.5		FS=27MHz,
Differential Hommeanty	DINL		±0.5	-1.0	LOD	Input range = 0.5Vpp
S/N	SN		54		dB	Fin=1MHz*, FS=27MHz,
S/(N+D)	SND		52		dB	Input range = 0.5Vpp
ADC internal common voltage	VCOM		0.96		V	
ADC internal			1 00		V	
positive VREF	VKF		1.20		v	
ADC internal			0.64		V	
negative VREF	VINI		0.04		v	

*Fin = AIN input signal frequency

AAF (Anti-Aliasing Filter)

Parameter	Symbol	Min	Тур	Max	Units	Condition
Pass band ripple	Gp	-1		+1	dB	6MHz
Stop band blocking	Gs	20	35		dB	27MHz

(5) Current consumption (at DVDD = AVDD = PVDD1 = PVDD2 = 1.8V, Ta = $-40 \sim 85^{\circ}C$) (*1)

Parameter	Symbol	Min	Тур	Max	Units	Condition
(Active mode)						
Total	IDD1		86	130	mA	CVBS : 2ch
	IDD2		63		mA	CVBS : 1ch (*2)
	IDD3		75	112	mA	S-Video (*2)
Analog block	חחוא		30		mΔ	CVBS : 2ch
			33			With Xtal crystal connected.
Digital block	DIDD		34		mA	CVBS : 2ch
I/O block	PIDD		13		mA	Load condition: CL=12pF, 24pF* (*DTCLK pin)
(Power down mode)						
Total	SIDD		≤ 1	20	uA	
Analog block	ASIDD		≤ 1		uA	PDN=L(DVSS) (*3)
Digital block	DSIDD		≤ 1		uA	
I/O block	PSIDD		≤ 1		uA	

(*1) With NTSC-J 100% color bar input.

(*2) Reference Value. During A Block is set to output, B Block is set to [No Decode].

MS1189-E-01

(*3)To perform power-down, OE_A, OE_B and RSTN pins must always be brought to the voltage polarity to be used or to ground level.

(6) Crystal circuit block $(Ta: -40 \sim 85^{\circ}C)$								
Parameter	Symbol	Min	Тур	Max	Units	Condition		
Frequency	f ₀		27		MHz			
Frequency tolerance	Δf / f			±100	ppm			
Load capacitance	CL		15		pF			
Effective equivalent resistance	Re			100	Ω	(*1)		
Crystal parallel capacitance	CO		0.9		pF			
XTI terminal external connection load capacitance	CXI		22		pF	CL=15pF		
XTO terminal external connection load capacitance	схо		22		pF	CL=15pF		

(*1) Effective equivalent resistance generally may be taken as $Re = R1 \times (1+CO/CL)^2$, where R1 is the crystal series equivalent resistance.

Example connection

(*2) Determine need for and appropriate value of limiting resistance (Rd) in accordance with the crystal specifications.

AK8857VQ is hereafter the "AK8857".

5. AC Timing

(DVDD=1.70V~2.00V, PVDD1=DVDD~3.60V, PVDD2=DVDD~3.60V, -40~85°C) Load condition: CL=12pF, 24pF(DTCLK pin)

(1) Clock Input

Set AK8857 clock input as follows.

Parameter	Symbol	Min	Тур	Max	Units
Input CLK	fCLK		27		MHz
CLK pulse width H	tCLKH	15			nsec
CLK pulse width L	tCLKL	15			nsec
Frequency tolerance				±100	ppm

(2) Clock Output (DTCLK output)

Parameter	Symbol	Min	Тур	Max	Units	Output Data Format
	FDTOLK		54			601,VGA, WVGA progressive output.
DICLK	IDICLK	IDTCLK 2	27			601,VGA, WVGA other than progressive output.

(3) Output Data Timing

DATA_A[7:0], HD_ACT_A, VD_ACT_A, FIELD_A, DVALID_A, DATA_A[7:0], HD_ACT_A, VD_ACT_A, FIELD_A, DVALID_A

Parameter	Symbol	Min	Тур	Max	Units	DTCLK
Output Data Catur Time	100	10			nsec	27MHz
	105	5			nsec	54MHz
Outeut Data Hald Time		10			nsec	27MHz
	ιυπ	5			nsec	54MHz

(4) Register reset timing

Parameter	Symbol	Min	Тур	Max	Units	Notes
	DEOETTIMINO	100			CLK	Based on clock leading
RSTN pulse width	RESETTIMING	(3.7)			(usec)	edge

Note. Clock input is necessary for reset operation.

RSTN pin must be pulled low following clock application.

(5) Power-down sequence and Reset sequence after power-down

Reset must be applied for at least 2048 clock cycles (or 83.33 µs) before setting PDN (PDN=Low). Reset must be applied for at least 5 ms after PDN release (PDN=Hi).

Parameter	Symbol	Min	Тур	Max	Units
Reset width before setting PDN	RESs	2048			CLK
5	ng PDN RESs elease RESh				(usec)
Reset width after PDN release	RESh	5			msec

To perform power-down, all control signals must always be brought to the voltage polarity to be used or to ground level.

For any power supply removal, all power supplies must be removed.

Clock input is necessary for resetting.

The power-down sequence for connection of the crystal is as follows.

(6) Power-on reset

At power-on, reset must be applied until the analog reference voltage and current have stabilized.¹ (*1) The order of each power supply to be start up is not required. All the power supply must be on within 100msec during PDN pin status is low.

Parameter	Symbol	Min	Тур	Max	Units
POWERUP TIME	PWUPTIME			100	msec
RSTN pulse width	RESPON	5			msec

¹Clock input is necessary for resetting.

(7) I²C bus input timing

(DVDD=1.70V~2.00V, PVDD1=DVDD~3.60V, PVDD2=DVDD~3.60V, -40~85°C)

(7-1) Timing 1

Parameter	Symbol	Min	Max	Units
Bus Free Time	tBUF	1.3		Usec
Hold Time (Start Condition)	tHD:STA	0.6		Usec
Clock Pulse Low Time	tLOW	1.3		Usec
Input Signal Rise Time	tR		300	Nsec
Input Signal Fall Time	tF		300	Nsec
Setup Time(Start Condition)	tSU:STA	0.6		Usec
Setup Time(Stop Condition)	tSU:STO	0.6		Usec

Note. The timing relating to the I^2C bus is as stipulated by the I^2C bus specification,

and not determined by the device itself. For details, see I²C bus specification.

(7-2) Timing 2

Parameter	Symbol	Min	Max	Units
Data Setup Time	tSU:DAT	100 ¹		nsec
Data Hold Time	tHD:DAT	0.0	0.9 ²	usec
Clock Pulse High Time	tHIGH	0.6		usec

¹ If I²C is used in standard mode, tSU: DAT \ge 250 ns is required.

² This condition must be met if the AK8854 is used with a bus that does not extend tLOW (to use tLOW at minimum specification).

6. Functional description

Analog interface

The AK8857 accepts composite video signal (CVBS), S-video input with 4 input pins available for this purpose.

The decode signal is selected via the register (AINSEL[4:0]).

The AK8857 can decode 2ch of anolog video signal at the same time during composite video signal input. The digital output data is output to A block and B block output block. It is possible to switch the digital output data between A block and B block output block. It also possible to select one of digital output data to be output at A block and B block output at the same time.

	Definition
	A block and B block output video signal selection :
	[AINSEL4: AINSEL0]
	[00000]: [A]: AIN1 (CVBS), [B]: AIN4(CVBS)
	[00001]: [A]: AIN1 (CVBS), [B]: AIN3(CVBS)
	[00010]: [A]: AIN1 (CVBS), [B]: AIN2(CVBS)
	[00011]: [A]: AIN1 (CVBS), [B]: AIN1(CVBS)
	[00100]: [A]: AIN1 (CVBS), [B]: Non-decode
	[00101]: [A]: AIN2 (CVBS), [B]: AIN4(CVBS)
	[00110]: [A]: AIN2 (CVBS), [B]: AIN3(CVBS)
	[00111]: [A]: AIN2 (CVBS), [B]: AIN2(CVBS)
	[01000]: [A]: AIN2 (CVBS), [B]: AIN1(CVBS)
	[01001], $[A]$, $AIN2 (CVBS)$, $[B]$, $NOII-decode$
	[01010]. [A]. AINS (CVDS), [D]. AIN4(CVDS) [010111: [A]: AIN3 (CVDS), [D]: AIN3(CVDS)
	[01011]. [A]. AINS (CVDS), [D]. AINS(CVDS) [01100]: [A]: AINS (CVDS), [D]: AINS(CVDS)
	[01100]. [A]. AIN3 (CVBS), [D]. AIN2(CVBS)
Analog Input Select	[0110]: [A]: AIN3 (CVBS), [B]: Non-decode
	[01111]; $[A]$: AIN4 (CVBS), $[B]$: AIN4(CVBS)
	[10000]: [A]: AIN4(CVBS), [B]: AIN3(CVBS)
	[10001]: [A]: AIN4 (CVBS) [B]: AIN2(CVBS)
	[10010]; [A]: AIN4 (CVBS), [B]: AIN1(CVBS)
	[10011]: [A]: AIN4 (CVBS). [B]: Non-decode
	[10100]; [A]: Non-decode, [B]: AIN4 (CVBS)
	[10101]; [A]: Non-decode, [B]: AIN3(CVBS)
	[10110]: [A]: Non-decode, [B]: AIN2(CVBS)
	[10111]: [A]: Non-decode, [B]: AIN1(CVBS)
	[11000]: [A]: AIN1(Y) / AIN3(C), [B]: Non-decode
	[11001]: [A]: AIN1(Y) / AIN3(C), [B]: AIN1(Y) / AIN3(C)
	[11010]: [A]: AIN2(Y) / AIN4(C), [B]: Non-decode
	[11011]: [A]: AIN2(Y) / AIN4(C), [B]: AIN2(Y) / AIN4(C)
	[11100]: [A]: Non-decode, [B]: AIN1(Y) / AIN3(C)
	[11101]: [A]: Non-decode, [B]: AIN2(Y) / AIN4(C)

The output block change to power-save mode when [Non-decode] is selected and digital circuit operational is stoped. This will low down the internal power consumption.

The data output is low during this state.

Available pin : DATA_A[7:0], HD_ACT_A, VD_ACT_A, DVALID_A, FIELD_A, DATA_B[7:0],

HD_ACT_B, VD_ACT_B, DVALID_B, FIELD_B, NSIG_A, NSIG_B pins.

Note: Output control via pins OE_A, OE_B, PDN, and RSTN takes priority, regardless of the above settings.

Analog band limiting filter and analog clamp circuit

Analog band limiting filter

The characteristics of the AK8857 internal analog band limiting filter (anti-aliasing), which is in front of the AD converter input, are as follows:

±1dB (~6MHz) −35dB (27MHz)....Typical value

Analog clamp circuit

In AK8857, the input video signal is clamping with analog circuit. The clamping method is show as follows.

[CVBS signal decoding]

AK8857 clamps the input signal to sync tip. (analog sync tip clamp)

The clamp timing pulse, with its origin at the falling edge of the internally synchronized and separated sync signal, is generated at approximately the central position of the sync signal.

[S-video signal decoding]

(Y signal)

AK8857 clamps the Y signal to sync tip. (analog sync tip clamp)

The clamp timing pulse, with its origin at the falling edge of the internally synchronized and separated sync signal, is generated at approximately the central position of the sync signal. (C signal)

AK8857 clamps the C signal to the middle level. (analog middle clamp)

The clamp timing pulse is generated at same timing with Y signal.

Additionary, the AK8857 can change the position, width and current value of clamp pulse by registers.

oCLPWIDTH[1:0]: Set the width of clamp pulse.

CLPWIDTH[1:0]-bit	Clamp width	Notes
[00]	296nsec	
[01]	593nsec	
[10]	1.1usec	
[11]	2.2usec	

•CLPSTAT[1:0]: Set the position of clamp pulse.

CLPSTAT[1:0]-bit	Clamp position	Notes
[00]	Sync tip/ middle/ bottom clamp: Centor of	The positions of all clamp pulse are
	horizontal sync	changed.
[01]	(1/128) H delay.	
[10]	(2/128) H advance	
[11]	(1/128) H advance	

oCLPG[1:0] : Set the current value of fine clamp in analog block.

CLPG[1:0]-bit	Clamp current value	Notes
[00]	Min.	
[01]	Middle 1 (Default)	$Middle 1 = (Min. \times 3)$
[10]	Middle 2	$Max = (Min \times 7)$
[11]	Max.	Max. = (MIII. x T)

oUDG[1:0]: Set the current value of rough clamp in analog block.

L 2	<u> </u>	
UDG[1:0]-bit	Clamp current value	Notes
[00]	Min. (Default)	N(add, add,
[01]	Middle 1	Viidale 1 = (Win, X 2)
[10]	Middle 2	$Max = (Min \times 4)$
[11]	Max.	iviax. – (iviii1. x 4)

Its digital circuit clamps the digitized input data to the pedestal level (digital pedestal clamp), and will be described later.

Output Data Format Setting (Pixel size / progressive output)

The AK8857 can convert the output pixel size from the original input pixel size. The AK8857 also can convert the interlaced input signal to progressive output signal.

The ALCOOFT		a start famorat	:-	~ h ~	ببنمامط
The AK8857	supported	output format	IS	snown	below

Input signal	Output pixel size	Interlace / Progressive	Output Clock	Notes
		output		
525 Line	720x487 (ITU-R BT.601)	Interlace	27MHz	
		Progressive	54MHz	(*1)
NTSC-M, J,	800x480 (WVGA)	Interlace	27MHz	
NTSC-4.43,		Progressive	54MHz	(*1)
PAL-M,	640x480 (VGA)	Interlace	27MHz	
PAL-60		Progressive	54MHz	(*1)
	400x240 (WQVGA)	Progressive	27MHz	(*2)
	320x240 (QVGA)	Progressive	27MHz	(*2)
	400x234(EGA)	Progressive	27MHz	(*2)
	480x240(WEGA1)	Progressive	27MHz	(*2)
	480x234(WEGA2)	Progressive	27MHz	(*2)
625 Line	720x576 (ITU-R BT.601)	Interlace	27MHz	
		Progressive	54MHz	(*1)
PAL-B,D,G,H,I,N,	800x480 (WVGA)	Interlace	27MHz	
PAL-Nc		Progressive	54MHz	(*1)
SECAM	640x480 (VGA)	Interlace	27MHz	
		Progressive	54MHz	(*1)
	400x240 (WQVGA)	Progressive	27MHz	(*2)
	320x240 (QVGA)	Progressive	27MHz	(*2)
	400x234(EGA)	Progressive	27MHz	(*2)
	480x240(WEGA1)	Progressive	27MHz	(*2)
	480x234(WEGA2)	Progressive	27MHz	(*2)

(*1) Interlcae signal to progressive signal conversion is using line repeating process.

The Frame rates for progressive output signal is selectable between 30frm/sec* and 60frm/sec*.

(*2) Only progressive output is support for this section.

It's not mentioned here, during the pixel size conversion the data is interpolar before being generated at the output.

If the input signal quality is poor, there is a case where it cannot satisfy the timing diagram shown below.

Example: If the input signal line is shortened than the normal, it will effect EAV sync signal and HD signal timing for the next line and for that reason the output signal will be effected as well.

*frm/sec: Frame number in 1 sec

The figure below shows the relationship between 1-line data pixel and sync signal timing for each output pixel size.

*() in the figure below refers to clock pixels of 625-line input.

*Because the data is sampling to a fixed-clock, the cycle period from end of active signal to the next line of horizontal sync signal is fixed is not guarantee.

[AK8857VQ]

○800x480(WVGA)

o480x240(WEGA1), 480x234(WEGA2), 480x272

Relationship between Sync timing of 1 frame to the next frame for each output pixel size is shown below.

The timing of HD, HACT, DVALID and VACT signal shown in the figure is enlarge.

Input: 525-line, horizontal : 487-line, Output : Interlace

Input: 525-line, horizontal: 487-line, Output: Progressive (60frm/sec)

523 524 525 1 2 3 4 5 6 7 8 9 10 11 12 Input Video Signal Imput Imp
13 14 15 16 17 18 19 20 21 22 23 24 25 260 Input 14 15 16 17 18 19 20 21 22 23 24 25 260 Video Signal 14 15 16 17 18 19 20 21 22 23 24 25 260 HD 14 15 16 17 18 19 20 21 22 23 24 25 260 HD 14 15 16 17 18 19 20 21 22 23 24 25 260 HD 14 15 16 17 18 19 20 10
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 Input Input
276 277 278 279 280 281 282 283 284 285 286 287 288 522 Input Input

Because of line repeating process during progressive signal conversion, as shown in the figure above A line and B line / C line and D line is output as the same signal. The FIELD signal is being toggle.

* Both ODD/ EVEN field has 486-line during active section not 487-line.

Input : 525-line, Horizontal line : 487-line, Output : Progressive (30frm/sec) (ODD Field output)

523 524 525 1 2 3 4 5 6 7 8 9 10 11 12 Video Signal Imput Imp
13 14 15 16 17 18 19 20 21 22 23 24 25 260 Input Imput
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 Input Video Signal Imput Imput Imput Imput
276 277 278 279 280 281 282 283 284 285 286 287 288 522 Video Signal Imput I

Because of line repeating process during progressive signal conversion, as shown in the figure above A line and B line / C line and D line is output as the same signal. The FIELD signal is being toggle.

* Both ODD/ EVEN field has 486-line during active section not 487-line.

Input : 525-line, Horizontal line : 487-line, Output : Progressive (30frm/sec) (EVEN Field output)

523 524 525 1 2 3 4 5 6 7 8 9 10 11 12 Input Video Signal Imput Imp
13 14 15 16 17 18 19 20 21 22 23 24 25 260 Video Signal 260 //
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 Input Imput Imput
VD
VACT
FIELD 276 277 278 279 280 281 282 283 284 285 286 287 288 522 Input Input

Because of line repeating process during progressive signal conversion, as shown in the figure above A line and B line / C line and D line is output as the same signal. The FIELD signal is being toggle.

* Both ODD/ EVEN field has 486-line during active section not 487-line.

Input : 525-line, Horizontal line : 487-line, Output : Interlace

Input : 525-line, Horizontal line : 480-line, Output : Progressive (60frm/sec)

523 524 525 1 2 3 4 5 6 7 8 9 10 11 12 Video Signal Imput Imp
13 14 15 16 17 18 19 20 21 22 23 24 25 260 Video Signal _i
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 Video Signal Imput Imput Imput Imput Imput Imput Imput 271 272 273 274 275 Ho Imput <
276 277 278 279 280 281 282 283 284 285 286 287 288 522 Input Input

Because of line repeating process during progressive signal conversion, as shown in the figure above A line and B line / C line and D line is output as the same signal. The FIELD signal is being toggle.

Input : 525-line, Horizontal line : 480-line, Output : Progressive (30frm/sec) (ODD field output)

523 524 525 1 2 3 4 5 6 7 8 9 10 11 12 Video Signal Imput Imp
13 14 15 16 17 18 19 20 21 22 23 24 25 260 Input Imput
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 Input Video Signal Imput Imput Imput Imput<
276 277 278 279 280 281 282 283 284 285 286 287 288 522 Video Signal Imput I

Because of line repeating process during progressive signal conversion, as shown in the figure above A line and B line / C line and D line is output as the same signal. The FIELD signal is being toggle.

Input : 525-line, Horizontal line : 480-line, Output : Progressive (30frm/sec) (EVEN field output)

523 524 525 1 2 3 4 5 6 7 8 9 10 11 12 Input Imput
13 14 15 16 17 18 19 20 21 22 23 24 25 260 Video Signal 260 // // 260 // // // 260 // // // 260 //
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 Video Signal Imput Imp
276 277 278 279 280 281 282 283 284 285 286 287 288 522 Input Imput Imput

Because of line repeating process during progressive signal conversion, as shown in the figure above A line and B line / C line and D line is output as the same signal. The FIELD signal is being toggle.

Input : 525-line, Horizontal line : 240-line/234-line, Output : (ODD field output)

In 234-line output case, as shown above lines from line 22 to 24 and from line 259 to 261 is not count as active line. For that reason, HACT, VACT and DVALID is "High" during the line mentioned above.

Input : 525-line, Horizontal line : 240-line/234-line, Output : (EVEN field output)

In 234-line output case, as shown above lines from line 22 to 24 and from line 259 to 261 is not count as active line. For that reason, HACT, VACT and DVALID is "High" during the line mentioned above.

[AK8857VQ]

Input : 625-line, Horizontal line : 576-line

Input : 625-line, Horizontal line : 576-line, Output : Progressive (60frm/sec)

620 621 622 623 624 625 1 2 3 4 5 6 7 8 9 Video Signal 0
Input 10 21 22 23 24 25 26 27 28 29 30 31 306 HDS
1nput 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 Video Signal Imput Imput Imput Imput Imput Imput 310 311 312 313 314 315 316 317 318 319 320 321 Video Signal Imput I
322 277 334 335 336 337 338 339 340 341 342 343 344 619 Video Signal 619 HD 619 ND 619 VIdeo Signal DVALID

Because of line repeating process during progressive signal conversion, as shown in the figure above A line and B line / C line and D line is output as the same signal. The FIELD signal is being toggle.

* In the above figure, both ODD/EVEN field line number is 574-line. To set the active line to 576-line, set the VBIL[2:0] register to 0x01 value.
Input : 625-line, Horizontal line : 576-line, Output : Progressive (30frm/sec) (ODD field output)

620 621 622 623 624 625 1 2 3 4 5 6 7 8 9 Video Signal Imput Imput
VD VACT FIELD
Input 10 21 22 23 24 25 26 27 28 29 30 31 306 Video Signal _ HD _ // <t< td=""></t<>
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 Video Signal Imput Imput Imput Imput Imput Imput Imput Imput Imput 313 314 315 316 317 318 319 320 321 Hacts Imput Im
11LLD 322 277 334 335 336 337 338 339 340 341 342 343 344 619 Video Signal // // // // // // // // // // // // 619 HD //

Because of line repeating process during progressive signal conversion, as shown in the figure above A line and B line / C line and D line is output as the same signal. The FIELD signal is being toggle.

* In the above figure, both ODD/EVEN field line number is 574-line. To set the active line to 576-line, set the VBIL[2:0] register to 0x01 value.

Input : 625-line, Horizontal line : 576-line, Output : Progressive (30frm/sec) (EVEN field output)

620 621 622 623 624 625 1 2 3 4 5 6 7 8 9 Video Signal Imput
Input 10 21 22 23 24 25 26 27 28 29 30 31 306 HD
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 Video Signal Imput Imp
VACT FIELD
322 277 334 335 336 337 338 339 340 341 342 343 344 619 Video Signal _ //

Because of line repeating process during progressive signal conversion, as shown in the figure above A line and B line / C line and D line is output as the same signal. The FIELD signal is being toggle.

* In the above figure, both ODD/EVEN field line number is 574-line. To set the active line to 576-line, set the VBIL[2:0] register to 0x01 value.

Input : 625-line, Horizontal line : 480-line

As shown in the figure above, start from line 25 / line 338 to the next starting line of each 5 line, the line is output as not active line. HACT and DVALID is "High" during the line mentioned. EAV sync code is added to the line mentioned above and SAV sync code is not.

Input : 625-line, Horizontal line : 480-line, Output : Progressive (60frm/sec)

620 621 622 623 624 625 1 2 3 4 5 6 7 8 9 Video Signal Imput
Input 10 21 22 23 24 25 26 27 28 29 30 31 306 HD HD HD Imput
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 Video Signal Imput Imp
322 277 334 335 336 337 338 339 340 341 342 343 344 619 Video Signal 619 HACT 619 VALID 619 VALID

Because of line repeating process during progressive signal conversion, as shown in the figure above A line and B line / C line and D line is output as the same signal. The FIELD signal is being toggle.

As shown in the figure above, start from line 25 / line 338 to the next starting line of each 10 line, the line is output as not active line. HACT and DVALID is "High" during the line mentioned. EAV sync code is added to the line mentioned above and SAV sync code is not.

* In the above figure, both ODD/EVEN field line number is 478-line. To set the active line to 480-line, set the VBIL[2:0] register value to 0x01.

Input : 625-line, Horizontal line : 480-line, Output : Progressive (30frm/sec) (ODD field output)

620 621 622 623 624 625 1 2 3 4 5 6 7 8 9 Video Signal Imput Imput
Input 10 21 22 23 24 25 26 27 28 29 30 31 306 Video Signal HD 306 Video Signal HD
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 Video Signal Imput Imput Imput Imput Imput Imput Imput 310 311 312 313 314 315 316 317 318 319 320 321 Video Signal Imput I
322 277 334 335 336 337 338 339 340 341 342 343 344 619 Video Signal _ //

Because of line repeating process during progressive signal conversion, as shown in the above figure A line and B line / C line and D line is output as the same signal. The FIELD signal is being toggle.

As shown in the figure above, start from line 25 to the next starting line of each 10 line, the line is output as not active line. HACT and DVALID is "High" during the line mentioned. EAV sync code is added to the line mentioned above and SAV sync code is not.

* In the above figure, both ODD/EVEN field line number is 478-line. To set the active line to 480-line, set the VBIL[2:0] register value to 0x01.

Input : 625-line, Horizontal line : 480-line, Output : Progressive (30frm/sec) (EVEN field output)

620 621 622 623 624 625 1 2 3 4 5 6 7 8 9 Video Signal 0
Input 10 21 22 23 24 25 26 27 28 29 30 31 306 HD
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 Video Signal Imput Imp
322 277 334 335 336 337 338 339 340 341 342 343 344 619 Video Signal //

Because of line repeating process during progressive signal conversion, as shown in the figure above, A line and B line / C line and D line is output as the same signal. The FIELD signal is being toggle.

As shown in the figure above, start from line 338 to the next starting line of each 10 line, the line is output as not active line. HACT and DVALID is "High" during the line mentioned. EAV sync code is added to the line mentioned above and SAV sync code is not.

* In the above figure, both ODD/EVEN field line number is 478-line. To set the active line to 480-line, set the VBIL[2:0] register value to 0x01.

Input : 625-line, Horizontal line : 240-line/234-line, Output : Progressive (ODD field output)

As shown in the figure above, start from line 25 to the next starting line of each 5 line, the line is output as not active line. HACT and DVALID is "High" during the line mentioned.

EAV sync code is added to the line mentioned above and SAV sync code is not.

In 234-line output case, as shown above, lines from line 23 to 26 and from line 308 to 310 is not count as active line. For that reason, HACT, VACT and DVALID output is "High" during the line mentioned above.

Input : 625-line, Horizontal line : 240-line/234-line, Output : Progressive (EVEN field output)

As shown in the figure above, start from line 338 to the next starting line of each 5 line, the line is output as not active line. HACT and DVALID is "High" during the line mentioned. EAV sync code is added to the line mentioned above and SAV sync code is not.

In 234-line output case, as shown above, lines from line 336 to 339 and from line 621 to 623 is not count as active line. For that reason, HACT, VACT and DVALID output is "High" during the line mentioned above.

Input video signal categorization

The AK8857 can decode the following video signals, in accordance with the register setting.

NTSC-M,J NTSC-4.43 PAL-B,D,G,H,I,N PAL-Nc PAL-M PAL-60 SECAM

The register settings for the input signal characterization are essentially as follows.

VSCF[1:0]-bit	Subcarrier frequency (MHz)	Notes
[00]	3.57954545	NTSC-M,J
[01]	3.57561149	PAL-M
[10]	3.58205625	PAL-Nc
[11]	4.43361875	PAL-B,D,G,H,I,N , NTSC-4.43 , PAL-60 SECAM*

○VSCF[1:0]-bi: Setting for subcarrier frequency of input signal

*For SECAM input signal, set VSCF[1:0] to [11].

•VCEN[1:0]-bit: Setting for color encode format of input signal.

VCEN[1:0]-bit	Color encode format	Notes
[00]	NTSC	
[01]	PAL	
[10]	SECAM	
[11]	Reserved	

○VLF-bit : Setting for line frequency of each input frame.

VLF-bit	Number of lines	Notes
[0]	525	NTSC-M,J , NTSC-4.43 , PAL-M, PAL-60
[1]	625	PAL-B,D,G,H,I,N,Nc , SECAM

oBW-bit: Setting for decoding of input signal as monochrome signal (monochrome mode)

BW-bit	Signal type	Notes
[0]	Not monochrome (monochrome mode OFF)	
[1]	Decode as monochrome signal (monochrome mode ON)	

In the monochrome mode at CVBS decoding, the input signal is treated as a monochrome signal, and all sampling data digitized the the AD converter passes through the luminance process and is processed as a luminance signal. Thus, with this bit ON, the signal input to the Y/C separation block is all output as luminance signal data to the luminance signal processing block.

In the monochrome mode at S-video decoding, Y signal is only decoded.

In the monochrome mode, the CbCr code is output as 0x80 (601 level data) regardless of the input.

oSETUP-bit: Setting for presence or absence of input signal SETUP.

SETUP-bit	SETUP presence/absence	Notes
[0]	Setup absent	
[1]	Setup present	7.5IRE Setup

With the Setup present setting, the luminance and color signals are processed as follows: Luminance signal: Y=(Y-7.5)/0.925 Color signal: U=U/0.925, V=V/0.925

Input Signal Auto Detection Function

The register settings for auto detection are essentially as follows.

•AUTODET-bit:	Settings for	auto detection	of input signal	(auto detection r	node)
---------------	--------------	----------------	-----------------	-------------------	-------

AUTODET-bit	Auto detection	Notes
[0]	OFF	Manual setting
[1]	ON	

The auto detection recognizes the following parameters.

Number of lines per frame: 525/625 Carrier frequencies: 3.57954545 3.57561149 3.58205625 4.43361875

Color encoding formats: NTSC

PAL

SECAM

Monochrome signal: Not monochrome/monochrome

Note: Automatic monochrome detection is active if the color kill setting is ON (COLKILL-bit = [1].)

The AK8857 stores the detected parameter to the Input Video Status Register (thus, as an internal notice function).

This enables the host to distinguish among the formats NTSC-M, J; NTSC-4.43; PAL-B, D, G, H, I, N; PAL-M; PAL-Nc; PAL-60; SECAM; and monochrome.

It should be noted that it does not detect NTSC-M, NTSC-J, or PAL-B, D, G, H, I, N formats.

(Notice)

"Direct SYNC VLOCK" (Sub-Address0x03[7]=1) must not use when it is being operated on auto detection function.

Limiting auto input video signal detection function

The AK8857 has the function to limit the input video signal to be detected during auto detection mode.

Bit	Register Name		R/W	Definition
bit 0	NDPALM	No Detect PAL-M bit	R/W	[0]: PAL-M candidate [1]: PAL-M non-candidate
bit 1	NDPALNC	No Detect PAL-Nc bit	R/W	0]: PAL-Nc candidate [1]: PAL-Nc non-candidate
bit 2	NDSECAM	No Detect SECAM bit	R/W	[0]: SECAM candidate [1]: SECAM non-candidate
bit 3	Reserved	Reserved	R/W	Reserved
bit 4	NDNTSC443	No Detect NTSC-4.43 bit	R/W	0]: NTSC-4.43 candidate [1]: NTSC-4.43 non-candidate
bit 5	NDPAL60	No Detect PAL-60 bit	R/W	[0]: PAL-60 candidate [1]: PAL-60 non-candidate
bit 6	ND525L	No Detect 525Line bit	R/W	[0]: 525 line candidate [1]: 525 line non-candidate
bit 7	ND625L	No Detect 625Line bit	R/W	[0]: 625 line candidate [1]: 625 line non-candidate

•NDMODE Register: For limiting auto detection candidates

In making the above register settings, the following restrictions is apply,

- 1. Setting both NDNTSC443(bit 4) and NDPAL60(bit 5) to [1] (High) is prohibited.
- 2. Setting both ND525L(bit 6) and ND625L(bit 7) to [1] (High) is prohibited.
- 3. To limit candidate formats, it is necessary to have the auto detection mode OFF while first

setting the register to non-limited signal status and next the NDMODE settings, and then setting the auto detection mode to ON.

Output Data format

In the AK8857, the settings for the output code and the vertical blanking intervals for the output signal are as follows.

ÿ		
601LIMIT-bit	Output data code Min~Max	Notes
[0]	Y: 1~254 Cb, Cr: 1~254	Default
[1]	Y: 16~235 Cb, Cr: 16~240	

o601LIMIT-bit: Settings for output data code Min/Max

All internal calculating operations are made with Min = 1, Max = 254.

With 601LIMIT-bit set to [1], codes 1~15 and 236~254 are respectively clipped to 16,235.

oTRSVSEL-bit: Settings for V-bit handling in ITU-R BT.656 format

	525-line		625-line	
TROVOEL-DIL	V-bit=0	V-bit=1	V-bit=0	V-bit=1
[0]	Line10~Line263	Line1~Line9		
ITU-R BT 656-3	Line273~Line525	Line264~Line272	Lino22-Lino210	Line1~Line22
[1] ITU-R BT 656-4 SMPTE125M	Line20~Line263 Line283~Line525	Line1~Line19 Line264~Line282	Line336~Line623	Line311~Line335 Line624~Line625

The TRSVSEL register only available during the interlace output decode by ITU-R BT.601 output size. These values are unaffected by the VBIL[2:0]-bits setting.

oVBIL[2:0]-bit: Settings f	or vertical blanking interval
----------------------------	-------------------------------

VBIL[2:0]-bit	Line Adjustment width	Notes
[000]	Default	
[001]	1Line advance	*1
	2Line advance	*2
[010]	2Lines advance	*1
	4Lines advance	*2
[011]	3Lines advance	*1
	6Lines advance	*2
[100]	4Lines advance	*1
	8Lines advance	*2
[101]	5Lines advance	*1
	10Lines advance	*2
[110]	6Lines advance	*1
	12Lines advance	*2
[111]	7Lines advance	*1
	14Lines advance	*2

*1: Other than progressive output

*2: Progressive output

The starting position of HACT signal and DVALID signal is changed according to VACT signal starting position.

•SLLVL-bit: Settings for slice level

SLLVL-bit	Slice level
[0]	25IRE
[1]	50IRE

The results of VBI slicing by the AK8857 slicing function are output as ITU-R BT.601 digital data. The VBI interval is set via VBIL[2:0]-bits. VBI slicing is performed in the luminance signal processing path, so that the Cb/Cr value of the effective line 601 output code is output at the same level as the corresponding luminance signal.

The slice level and the output code are set via the register. The output code value is set via the Hi/Low Slice Data Set Register, as follows.

Hi Slice Data Set Register*:	Setting for higher of two values resulting from slicing. Default: 0xEB(235)
Low Slice Data Set Register*:	Setting for lower of two values resulting from slicing. Default: 0x10(16)

*Note that a setting of 0x00 or 0xFF corresponds to a special 601 code.

oVBIDEC[1:0]-bit: Settings for decode data in the VBI period

VBIDEC[1:0]-bit	Decode data	Notes
[00]	Disak laval autaut	Y = 0x10
נטטן	Black level output	Cb/Cr = 0x80
[04]	Monochrome mode	Y = data converted to 601 level
נטון		Cb/Cr = 0x80
[40]	Sliced data output	Y/Cb/Cr = value corresponding to slice level
נוטן	during VBI	(Value set at Hi/Low Slice Data Set Register)
[11]	Reserved	Reserved

Note that, with VBI period settings of Lines 1~9 and 263.5~272.5 in the 525 Line and Lines 623.5~6.5 and 311~318 in the 625 Line, the setting VBIDEC[1:0] will not be entered and the output will be in Black level code.

*Threshold values (mV) are approximate.

High/Low conversion is performed for either the Cb/Y or the Cr/Y combination. The above figure is an example of the conversion points for Cb/Y.

Output pin status

For normal operation, the output from the DATA_A[7:0], HD_ACT_A, VD_ACT_A,

DVALID_A, FIELD_A, NSIG_A, DATA_B[7:0], HD_ACT_B, VD_ACT_B, DVALID_B, FIELD_B,

NSIG_B pins can each be fixed at Low via the Output Control Register.

The black level and blue level output have the priority to be output from the DATA_A[7:0] and DATA_B[7:0] pins regardless of these register settings.

Note, however, that the OE_A, OE_B, PDN, RSTN pins and AINSEL[4:0] (non decode) states will have priority regardless of these register settings.

Output pin timing signal

The timing signal can be output from the HD_ACT_A, VD_ACT_A, DVALID_A, FIELD_A, HD_ACT_B, VD_ACT_B, DVALID_B, FIELD_B pins. The polarity of each timing signal at the output pin can be invert by register setting.

At the HD_ACT output pin, the output signal can be selected between HD signal and HACT signal by register setting.

At the VD_ACT output pin, the output signal can be selected between VD signal and VACT signal by register setting.

 VDACTSEL-bit : VD/ VACT signal output setting 	
---	--

VDACTSEL-bit	VD_ACT output pin setting
[0]	VD signal is output
[1]	VACT signal is output

oHDACTSEL-bit : HD/ HACT signal output setting

0	
HDACTSEL-bit	HD_ACT output pin setting
[0]	HD signal is output
[1]	HACT signal is output

The polarity of output from the DATA_A[7:0] / DATA_B[7:0] and DTCLKcan be inverted.

oCLKINV-bit: DTCLK signal polarity setting

CLKINV-bit	Polarity setting
[0]	Rising edge
[1]	Falling edge

If each of A or B output 54MHz, DTCLK pin output 54MHz. So, Not IP conversion data is alternated by 2CLK.

CLKINV-bit	A and B block at 27Mhz/54Mhz output	A block : IP conversion output
A Block : CLKINV=[0] B Block : CLKINV=[0]	DTCLK DATA_A[7:0] D0 D1 D2 D3 D4 DATA_B[7:0] D0 D1 D2 D3 D4	DTCLK DATA_A[7:0] D0D1D2D3D4D5D6D7D8D9 DATA_B[7:0] D0 D1 D2 D3 D4
A Block : CLKINV=[1] B Block : CLKINV=[0]	DTCLK DATA_A[7:0] D0 D1 D2 D3 DATA_B[7:0] D0 D1 D2 D3 D4	DTCLK DATA_A[7:0]D0D1D2D3D4D5D6D7D8 DATA_B[7:0]D01234
A Block : CLKINV=[0] B Block : CLKINV=[1]	DTCLK DATA_A[7:0] D0 D1 D2 D3 D4 DATA_B[7:0] D0 D1 D2 D3	DTCLK DATA_A[7:0] D0D1D2D3D4D5D6D7D8D9 DATA_B[7:0] D0 D1 D2 D34
A Block : CLKINV=[1] B Block : CLKINV=[1]	DTCLK DATA_A[7:0] D0 D1 D2 D3 DATA_B[7:0] D0 D1 D2 D3	DTCLK DATA_A[7:0]D0D1D2D3D4D5D6D7D8 DATA_B[7:0]D0D1D2J34

Output data timing

The AK8857 can control timing of output data.

YCDELAY[2:0]-bit	Y and C timing	Notes
[001]	Y advance 1sample toward C.	2clk advance
[010]	Y advance 2 sample toward C.	4clk advance
[011]	Y advance 3 sample toward C.	6clk advance
[000]	No Delay and advance.	Default value
[101]	Y delay 3 sample toward C.	6clk delay
[110]	Y delay 2 sample toward C.	4clk delay
[111]	Y delay 1 sample toward C.	2clk delay
[100]	Reserved	

*Setting by 2 complement

Because each sample is delay/advance toward C, 1sample is equal to 1clk width.

YCDELAY[2:0] = [000]	Cb0	Y0	Cr0	Y1	Cb1	Y2	Cr1	Y3	Cb2	Y4	Cr2	Y5	Y/C default
YCDELAY[2:0] = [111]	Cb0	Y857	Cr0	Y0	Cb1	Y1	Cr1	Y2	Cb2	Y3	Cr2	Y4	1sample delay
YCDELAY[2:0] = [001]	Cb0	Y1	Cr0	Y2	Cb1	Y3	Cr1	Y4	Cb2	Y5	Cr2	Y6	1sample adv.
													DTCLK

oACTSTA[2:0]-bit: Adjustment of active video start position

ACTSTA[2:0]-bit	Line and activ	ve video start	Notes
[001]	525 Line	Starting postion is delay 1 sample	2clk delay
[010]	525 Line	Starting postion is delay 2 sample	4clk delay
[011]	525 Line	Starting postion is delay 3 sample	6clk delay
[000]	525 Line	Default value	Normal
			position
[101]	525 Line	Starting postion is advance 3 sample	6clk advance
[110]	525 Line	Starting postion is advance 2 sample	4clk advance
[111]	525 Line	Starting postion is advance 1 sample	2clk advance
[100]	Reserved	Reserved	

When the start position of active video is changed, the end position of active video also changed. (Active video space is fixed)

VLOCK mechanism

The AK8857 synchronizes internal operation with the input signal frame structure. If, for example, the frame structure of the input signal comprises 524 lines, the internal operation will have a structure of 524 lines per frame. This mechanism is termed the VLOCK mechanism. If an input signal changes from a structure of 525 lines per frame to one of 524 lines per frame, internal operation will change accordingly, and the VLOCK mechanism will go to UnLock via a pull-in process. In such case, the UnLock status can be confirmed via the control register [VLOCK-bit]. Note that the time required for locking of the VLOCK mechanism upon channel or other input signal switching will be about 2 frames. (PLL SYNC VLOCK)

Additionary, AK8857 supports "direct locking" mode that is not using VLOCK operation. (Direct SYNC VLOCK)

VLOCKSEL-bit	Internal operation with the input signal frame structure
[0]	PLL SYNC VLOCK
[1]	Direct SYNC VLOCK

(Notice)

"Auto detection function" (Sub-Address0x0E[7]=1, 0x26[7]=1) must not use when it is being operated on Direct SYNC VLOCK.

Auto Gain Control_AGC

The AGC of the AK8857 measures the size of the input sync signal (i.e., the difference between the sync tip and pedestal levels), and adjusts the PGA value to bring the sync signal level to 286^a or 300^b mV. The AGC function amplifies the input signal to the appropriate size and enables input to the AD converter. The AGC function in the AK8857 is adaptive, and thus includes peak AGC as well as sync AGC.

Peak AGC is effective for input signals in which the sync signal level is appropriate and only the active video signal is large.

^a NTSC-M, J; NTSC-4.43; PAL-M......286mV

^b PAL-B, D, G, H, I, N; PAL-Nc; PAL-60; SECAM......300mV

AGCT[1:0]-bit	Time constant	Notes
[00]	Disable	AGC OFF, PGA register enabled.
[01]	Fast	T= 1Field
[10]	Middle	T= 7Fields
[11]	Slow	T= 29Fields

oAGCT[1:0]-bit : Settings for AGC time constant

T is the time constant.

Manual setting of the PGA register is possible only if AGC is disabled.

oAGCC-bit : Settings for AGC non-sensing range

AGCC[1:0]-bit	Non-sensing range	Notes
[00]	±2LSB	
[01]	±3LSB	
[10]	±4LSB	
[11]	None	

oAGCFRZ-bit : Settings for freezing AGC function

AGCFRZ-bit	AGC status	Notes
[0]	Non-frozen	
[1]	Frozen	

Note. The gain value at the time of freezing is maintained during the frozen state, and it is then possible to read out the gain value via the PGA1,2 Control Register.

oAGCTL-bit : Settings for selection of quick or slow transition between peak and sync AGC

AGCTL-bit	AGC transition	Notes
[0]	Quick	
[1]	Slow	

Auto Color Control (ACC)

The ACC of the AK8854 measures the level of the input signal color burst, and adjusts the level to 286 or 300 mV, as appropriate. The ACC is not applicable to SECAM input. As in AGC, both ACC time constant and ACC freeze settings can be entered.

•ACCT[1:0]-bit : Settings for ACC time constant

ACCT[1:0]-bit	Time constant	Notes
[00]	Disable	ACC OFF
[01]	Fast	T= 2Fields
[10]	Middle	T= 8Fields
[11]	Slow	T= 30Fields

oACCFRZ-bit : Settings for freezing ACC function

ACCFRZ-bit	ACC status	Notes
[0]	Non-frozen	
[1]	Frozen	

The ACC and Color saturation functions operate independently. If ACC is enabled, the color saturation adjustment is applied to the signal that has been adjusted to the appropriate level by the ACC.

No-signal output

If no input signal is found (as shown by the control bit NOSIG-bit), the output signal is black-level, blue level (blueback), or input-state (sandstorm), depending on the register setting.

oNSIGMD-bit : Settings for output signals for no input signal

NSIGMD [1:0]-bit	Output	Notes
[00]	Black-level	
[01]	Blue-level (blueback)	
[10]	Input-state (sandstorm)	
[11]	Reserved	

Y/C separation

The adaptive two-dimensional Y/C separation of the AK8857 utilizes a correlation detector to select the best-correlated direction from among vertical, horizontal, and diagonal samples, and selects the optimum Y/C separation mode. For NTSC-4.43, PAL-60, and SECAM inputs, the Y/C separation is one-dimensional only, regardless of the setting.

YCSEP[1:0]-bit	Y/C separation mode	Notes
[00]	Adaptive	
[01]	1-D	1D (BPF)
[10]	2 D	NTSC-M, J, PAL-M: 3 Line 2-D
[10]	2-0	PAL-B, D, G, H, I, N, Nc: 5 Line 2-D (*1)
[11]	Reserved	

For NTSC-4.43, PAL-60, and SECAM inputs, Y/C separation is 1-D only, regardless of the setting.

C filter

The bandwidth of the C filter can be set via the register, as follows.

oC358FIL[1:0]: Settine	as for C filter bandwidth.	for input signal with 3	.58 MHz subcarrier wave
	je .e. e		

C358FIL[1:0] -bit	C filter bandwidth setting	Notes
[00]	Narrow	
[01]	Medium	
[10]	Wide	NTSC-W, J, PAL-W, PAL-NC
[11]	Reserved	

C443FIL[1:0] -bit	C filter bandwidth setting	Notes
[00]	Narrow	
[01]	Medium	
[10]	Wide	$PAL-D, D, G, \Pi, I, N, N SC-4.43, PAL-00$
[11]	Reserved	

oC443FIL[1:0]: Settings for C filter bandwidth, for input signal with 4.43 MHz subcarrier wave

Note. No bandwidth selection is possible for SECAM input.

UV filter

The UV bandwidth can be changed by switch between low pass filters types for the demodulated C signal.

○UVFILSEL-bit :	Settings for	r UV filter	switching	(CVBS or	S-video ir	iput)
				\		

UVFILSEL-bit	Bandwidth	Notes
[0]	Wide	
[1]	Narrow	

Digital Pixel Interpolator

The digital pixel interpolator of the AK8857 aligns vertical pixel positions and it also aligns horizontal pixel position in fixed-clock operating modes.

oINTPOLOFF-bit : S	Settings for	pixel interpo	olator operation
--------------------	--------------	---------------	------------------

INTPOLOFF-bit	Interpolator operation	Notes
[0]	ON	
[1]	OFF	

Clock

The AK8857 is operational by fixed-clock. To synchronized analog video signal, it doesn't have PLL internally. The input clock is 27Mhz. Only when progressive output of 720x487, VGA, WVGA output format, the data is sampling to 54Mhz generated internally from the input clock 27Mhz.

Phase correction

In PAL-B, D, G, H, I, N, Nc, 60, and M decoding, the AK8857 performs phase correction for each line. With this function ON, color averaging is performed for each line. In the adaptive phase correction mode, interline phase correlation is sampled and color averaging is performed for correlated samples. Interline color averaging is also performed in NTSC-M and J decoding.

No phase correction or color averaging is performed in SECAM decoding.

DPAL[1:0]-bit	Status	Notes
[00]	Adaptive phase correction mode	
[01]	Phase correction ON	
[10]	Phase correction OFF	
[11]	Reserved	

oDPAL[1:0]-bit : Settings for phase correction

Output interface

[1] Interface with EAV/SAV Sync

The EAV/SAV Sync code of ITU-R BT.656 standard interface can be added to the output data of AK8857 when ITU-R BT.601 output size interlaced format is selected.

For the output size other than ITU-R BT.601 output size format, 2 pixels is added to the EAV/SAV Sync code at the outside of DVALID signal active section. The changes also apply to V bit and Fbit according to the lines where the polarity of VACT signal and FIELD signal is changed.

Relation between VACT and V bit

Realtion between DVALID and EAV/SAV Sync

Since the AK8857 data is sampling using fixed-clock, the sample number from EAV to SAV is not guarantee. For that reason, the default data output is in SAV format.

		U
EAVSAV-bit	Status	Notes
[0]	Add	Default value
[1]	No change	

• EAVSAV-bit : EAV/SAV sync code is superimposed to the output data setting.

[2] Interface with Timing signal

The AK8857 can output the HD signal, VD signal, HACT signal, VACT signal, DVALID signal and FIELD signal at the output pins. Please refer to the Output Data Format setting for the correct timing of each signal.

The space between DVALID signal is changed from low to high, and HD/HACT signals is changed from high to low is not guarantee and for that reason the sample number for 1 line also is not guarantee. But the space between HD/HACT signals is changed from high to low and DVALID signal is changed from low to high, the timing is fixed.

Automatic setup processing

In auto detection mode, the AK8857 can perform automatic setup processing in accordance with the detected signal.

Setup processing of the signal to be decoded consists of the following.

Luminance signal: Y=(Y-7.5)/0.925 Color signal: U=U/0.925, V=V/0.925

Automatic setup processing (AK8857 in auto detection mode)

	Register setting		
Detected signal	Setup-bit	STUPATOFF-bit (Automatic setup processing)	Detected signal setup processing status
	[0]	[0]	Disable
PAL-B,D,G,H,I,N PAL-Nc , 60 SECAM	[U]	[1]	Disable
	[1]	[0]	Enable
		[1]	Enable
PAL-M NTSC-4.43	[0]	[0]	Enable
		[1]	Disable
	[1]	[0]	Enable
		[1]	Enable

In the auto detection mode, the setup processing status will be determined by the register setting on the basis of the detected signal category, with no detection as to the presence or absence of input signal setup.

PGA (programmable gain amp)

The AK8857 digital PGA is buit internally.

The setting value can be set in range of –3dB to 10dB using ADC output data.

The register default setting is 0x1F (=0dB).

When analog video signal (0.5Vpp) is input to AIN ch, the setting value becomes the default value.

G: PGA gain(dB)

PGA : PGA register setting(Dec.)

$$G = 20 \log \left[\frac{0.625 - \{0.006 \times (31 - PGA)\}}{0.625} \right]$$

○PGA1[7:0]-bit : Sets the PGA value.
 ○PGA2[7:0]-bit : Sets the PGA value.

CVBS input : PGA1 is enable for A Block data output and PGA2 is enable for B Block data output. S-video input : PGA1 is enable for luminance signal and PGA2 is enable for color signal.

Notes : If the output of A block and B block are selected from the same AIN ch, only PGA1 setting is valid and PGA2 is not valid.

This register can read the AGC setting value.

If AGC is enabled, the PGA[7:0]-bits setting value has no effect, and the PGA setting can be manually entered in the register only if AGC is disabled.

Signal input to the AK8857 should be made with the input level attenuated approximately 39% (-8.19 dB) by resistance splitting.

MS1189-E-01

2010/12

Sync separation, sync detection, and black-level fine tuning

The AK8857 performs sync separation and sync detection on the digitized input signal, uses the detected sync signal as the timing reference for the decoding process, and calculates the phase error from the separated sync signal and applies it to control of the sampling clock. Black-level tuning can be performed in the sync separation block. The black-level fine-tuning band, which is 10 bits wide before REC 601 conversion, can be adjusted -8~+7 LSB in 1-LSB steps, with one step resulting in a change of about 0.4 LSB in the output code

BKLVL[3:0]-bit	Code adjustment of black level	Approx. change in 601 level (LSB)
[0001]	+1	+0.4
[0010]	+2	+0.8
[0011]	+3	+1.2
[0100]	+4	+1.6
[0101]	+5	+2.0
[0110]	+6	+2.4
[0111]	+7	+2.8
[0000]	Default	None
[1000]	-8	-3.2
[1001]	-7	-2.8
[1010]	-6	-2.4
[1011]	-5	-2.0
[1100]	-4	-1.6
[1101]	-3	-1.2
[1110]	-2	-0.8
[1111]	-1	-0.4

•BKLVL[3:0]-bit : Settings for black-level fine tuning

The black level is adjusted upward or downward by the value of the setting, which must be in 2's-complement form. Black-level adjustment is also enabled during the vertical blanking interval.

Digital pedestal clamp

The digitally converted input signal is clamped in the digital signal processing block. The internal clamp position depends on the input signal type (either 286 mV sync or 300 mV sync), but pedestal position is output as code 16 for both types. The digital pedestal clamp function can adjust the time constant and set the coring level.

•DPCT[1:0]-bit : Settings for digital pedestal clamp time constant

E	<u> </u>	
DPCT[1:0]-bit	Transition time constant	Notes
[00]	Fast	
[01]	Middle	
[10]	Slow	
[11]	Disable	Digital pedestal clamp OFF

oDPCC[1:0]-bit : Settings for digital clamp pedestal coring level

DPCC[1:0]-bit	Transition time constant (bit)	Notes
[00]	±1bit	
[01]	±2bit	
[10]	±3bit	
[11]	Non-coring	

Color killer

In CVBS or S-video input, the chroma signal quality of the input signal is determined by comparison of its color burst level against the threshold setting in the color killer control register. If the level is below the threshold, the color killer is activated, resulting in processing of the input as a monochrome signal and thus with CbCr data fixed at 0x80. Depending on the register setting, the color killer may also be activated by failure of the color decode PLL lock.

oCOLKILL-bit: Settings for color killer ON and OFF

COLKILL-bit		Notes
[0]	Enable	
[1]	Disable	

 \circ CKLVL[3:0]-bit: For threshold setting; default setting [1000] = -23dB.

oCKSCM[1:0]-bit: Used for threshold setting with SECAM input

CKSCM [1:0]		Notes
[00]	{CKLVL [3:0]}	
[01]	{0, CKLVL [3:1]}	1bit shift to right
[10]	{0,0, CKLVL [3:2]}	2bit shift to right
[11]	Reserved	

oCKILSEL: Settings for color killer activation

CKILSEL-bit	Condition for activation	
[0]	Burst level below threshold setting in CKLVL[3:0]-bits	
[1]	Burst level below threshold setting in CKLVL[3:0]-bits, or	*
	Failure of color decode PLL lock	

* PLL lock for color decode is not activate during SECAM signal is decode. The color killer ON/OFF status also depends on No-signal and Burst-level judgement and will not effect by CKILSEL setting.

Image quality adjustments

Image quality adjustments consist of contrast, brightness, sharpness, color saturation, and hue adjustment. All image quality adjustments are disabled during the vertical blanking interval, but contrast and brightness adjustment can be enabled by the register setting.

1. Contrast adjustment

CONT[7:0]-bits: For contrast adjustment; default value 0x80 (no adjustment)

Contrast adjustment involves multiplication by the gain factor setting in this register. The equation of the multiplication can be modified by register setting as follows.

If CONTSEL = [0], then YOUT = (CONT/128) x (YIN - 128) + 128

If CONTSEL = [1], then YOUT = (CONT/128) x YIN

YOUT: Contrast obtained by the calculation

YIN: Contrast before the calculation

CONT: Contrast gain factor (register setting value)

The gain factor can be set in the range $0\sim255$. If the calculated value is outside the specified contrast range, it is clipped to the upper '254' or lower '1' limit. With a control bit 601LIMIT setting of [1], the output will be in the range $16\sim235$.

oCONTSEL-bit : Settings for contrast adjustment Inclination

CONTSEL -bit	Inclination	Notes
[0]	Toward luminance of 128	
[1]	Toward luminance of 0	

2. Brightness adjustment

BR[7:0]-bits: For brightness adjustment; settings in 2's complement;

default value 0x00 (no adjustment)

Brightness adjustment involves multiplication of the 8Bit data luminance signal, after ITU-R BT.601 conversion, by the gain factor setting in this register, as follows.

YOUT = YIN + BR

YOUT: Brightness obtained by the calculation

YIN: Brightness before the calculation

BR: Brightness gain factor (register setting value)

The gain factor can be set in the range -127 to +127 in steps of 1, by 2's complement entry. If the calculated value is outside the specified contrast range, it is clipped to the upper '254' or lower '1' limit. With a control bit 601LIMIT setting of [1], the output will be in the range 16~235.

3. Color saturation adjustment

SAT[7:0]-bits: For color saturation adjustment; default value 0x80 (no adjustment)

Saturation adjustment involves multiplication of the color signal by the gain factor setting in this register. The calculated result is U/V demodulated.

The gain factor can be set in the range 0 to 255/128, in steps of 1/128.

4. Hue adjustment

HUE[7:0]-bits: For hue adjustment; settings in 2's complement; default value 0x00 (no adjustment) The AK8854 can perform hue rotation with a phase rotation range of $\pm 45^{\circ}$ in steps of about 0.35°.

5. Sharpness adjustment

Sharpness adjustment is performed on the luminance signal as shown in the following process diagram. The filter characteristics and the coring level can be selected by following register. A sharp image can be obtained by selection of the filter with the appropriate characteristics.

oSHARP[1:0]-bit: Settings for filter characteristics selection

SHARP[1:0]-bit	Filter characteristics	Notes
[00]	No filtering	Filter disabled
[01]	Min	
[10]	Middle	
[11]	Max	

oSHCORE[1:0]-bit : Settings for coring level after sharpness filtering

SHCORE[1:0]-bit	Coring level (LSB)	Notes
[00]	No coring	
[01]	±1LSB	Settings apply only to
[10]	±2LSB	filtered signal.
[11]	±3LSB	

oVBIIMGCTL-bit: Settings for brightness and contrast adjustment status (ON/OFF) during VBI

VBIIMGCTL -bit	Status during VBI	Notes
[0]	Disable	
[1]	Enable	

Luminance bandwidth adjustment

Luminance bandwidth adjustment can be performed for MPEG compression etc. The band-limiting filters for pre-compression limiting can be selected by the following register settings. Without these filters, the frequency response of the luminance signal is determined by the decimation filter.

LUMFIL [1:0]-bit	Filter characteristic	Notes
[00]	No filter. No bandwidth limit.	-3dB at 6.29MHz
[01]	Narrow	-3dB at 2.94MHz
[10]	Mid	-3dB at 3.30MHz
[11]	Wide	-3dB at 4.00MHz

Luminance signal decimation filter

Luminance bandwidth filter

Sepia output

Sepia-colored output of the decoded signal can be obtained by the following register setting.

oSEPIA-bit : Settings for sepia output of decoded signal

(Sub-address 0x14_[6])

SEPIA –bit	Output	Notes
[0]	Normal	
[1]	Sepia output	

VBI information decoding

The AK8857 decodes closed-caption, closed-caption-extended, VBID(CGMS), and WSS signals on the vertical blanking signal, and writes the decoded data into a storage register. The AK8857 reads each data bit in Request VBI Information Register(R/W)-[3:0] as a decoding request and thereupon enters a data wait state. Data detection and decoding to the storage register are then performed which indicates the presence or absence of data at STATUS 2 Register-[3:0] for host. The host can therefore determine the stored values by reading the respective storage registers. The value in each storage register is retained until a new value is written in by data renewal. For VBID data (CGMS-A), the CRCC code is decoded and only the arithmetic result is stored in the register.

Signal type	Superimposed line	Notes
Closed Caption	Line21	525-Line
Closed Caption Extended Data	Line284	525-Line
	Line20 / 283	525-Line
VBID	Line20 / 333	625-Line
WSS	Line23	625-Line

The storage registers for each of the signal types are as follows. For storage bit allocations, please refer to the respective register setting descriptions.

Internal status indicators

oNOSIG-bit: Indicates presence or absence of signal

NOSIG –bit	Status of signal input	Notes
[0]	Signal detected	
[1]	No signal detected	

VLOCK-bit: Indicates status of VLOCK

VLOCK-bit	Status of synchronization	Notes
[0]	Synchronized	
[1]	Non-synchronized	

oCOLKILON: Indicates status of color killer (ON/OFF)

COLKILONbit	Status of color killer	Notes
[0]	Not operation	
[1]	Operation	

oSCLKMODE -bit: Indicates status of color killer

SCLKMODEbit	Clock mode	Notes
[00]	Fixed-clock	
[01]	Line-locked	
[10]	Frame-locked	
[11]	Reserved	

•PKWHITE: Indicates status of luminance decode result after passage through AGC block

PKWHITE –bit	Status of luminance decode result			
[0]	Normal			
[1]	Overflow			

OVCOL: Indicates status of color decode result after passage through ACC block

OVCOL –bit	Status of color decode result			
[0]	Normal			
[1]	Overflow			

oREALFLD-bit: Indicates decoding signal field status

REALFLD -bit	Decoding field	Notes
[0]	Even	
[1]	Odd	

oAGCSTS-bit: Indicates status of adaptive AGC

AGCSTS -bit	Status of AGC operation		
[0]	Sync AGC operation		
[1]	Peak AGC operation		

oStatus 2-Ragister: Indicates closed caption, extended data, VBID, and WSS signal status.

1			In all a stars a	1 - 1 - 1 - 1		ا میں ا مالی میں م	+ +
\cap In	πιτ νιαθο	Status-Redister.	indicates s		automatic II	nni it sidnai	detection
~		oluluo i logioloi.	maiouteo c	Julius of	automation	iput olgitui	actoonon

BIT	Register Name		R/W	Definition
bit 0 ~ bit 1	ST_VSF0 ~ ST_VSF1	Status of Video Sub-Carrier Frequency	R	Input signal subcarrier frequency: [ST_VSF1 : ST_VSF0] (MHz) [00] : 3.57954545 (NTSC-M,J) [01] : 3.57561149 (PAL-M) [10] : 3.58205625 (PAL-Nc) [11] : 4.43361875 (PAL-B,D,G,H,I,N,60 , NTSC-4.43)
bit 2 ~ bit 3	ST_VCEN0 ~ ST_VCEN1	Status of Video Color Encode	R	Input signal color encode format: [ST_VCEN1 : ST_VCEN0] [00] : NTSC [01] : PAL [10] : SECAM [11] : Reserved
bit 4	ST_VLF	Status of Video Line Frequency	R	Input signal line frequency [0]: 525 line (NTSC-M,J, 4.43, PAL-M,60) [1]: 625 line (PAL-B,D,G,H,I,N,Nc , SECAM)
bit 5	ST_BW	Status of B/W Signal	R	Inputsignalmonochromeornon-monochrome : (*1)[0] : Non-monochrome detected[1] : Monochrome
bit 6	UNDEF	Un_define bit	R	Input signal presence or absence (*2) [0] : Input signal detected [1] : No input signal detected
bit 7	FIXED	Input Video Standard fixed bit	R	Input signal detection phase (*3) [0] : Input signal search in progress [1] : Input signal search complete

(*1) Monochrome auto detection is enabled if the color killer setting is ON(COLKILL-bit = [1]). ST_BW-bit changes to [1] when the color killer operates.

If the user has deliberately entered the B/W-bit setting Sub Address 0x01, input signal detection is limited to 525/625 line detection, and only the ST_VLF information is relevant.

- (*2) Shows results of input signal detection. If an input signal is detected, the value is [0]; if no input signal is detected, the value is [1].
- (*3) Shows the operating phase of the automatic input signal detector. The value is [0] while the detection operation is in progress, and [1] when it is completed; thus, when UNDEF-bit = [1], FIXED-bit = [0].

The VBI information storage registers are as follows.

Closed Caption 1 Register

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
CC7	CC6	CC5	CC4	CC3	CC2	CC1	CC0

Closed Caption 2 Register

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
CC15	CC14	CC13	CC12	CC11	CC10	CC9	CC8

WSS 1 Register

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
G2-7	G2-6	G2-5	G2-4	G1-3	G1-2	G1-1	G1-0

WSS 2 Register

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Reserved	Reserved	G4-13	G4-12	G4-11	G3-10	G3-9	G3-8

Extended Data 1 Register

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
EXT7	EXT6	EXT5	EXT4	EXT3	EXT2	EXT1	EXT0

Extended Data 2 Register

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
EXT15	EXT14	EXT13	EXT12	EXT11	EXT10	EXT9	EXT8

VBID 1 Register

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Reserved	Reserved	VBID1	VBID2	VBID3	VBID4	VBID5	VBID6

VBID 2 Register

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
VBID7	VBID8	VBID9	VBID10	VBID11	VBID12	VBID13	VBID14

7. Device control interface

The AK8857 is controlled via I²C bus control interface, as described below.

[I2C bus SLAVE Address]

The I²C slave address can be selected by a SELA pin setting of either [1000100] or [1000101].

	Slave Address										
SELA pin status	MSB							LSB			
Pulldown [Low]	1	0	0	0	1	0	0	R/W			
Pullup [High]	1	0	0	0	1	0	1	R/W			

[I²C Control Sequence]

(1) Write sequence

After receiving a write-mode slave address first byte, the AK8857 receives the sub-address in the second byte and data in the subsequent bytes. The write sequence may be single-byte or multi-byte.

(a) Single-byte write sequence

S	Slave Address	w	А	Sub Address	А	Data	А	Stp
	8-bit		1- bit	8-bit	1- bit	8-bit	1- bit	

(b) Multi-byte write sequence (m-bytes, sequential write operation)

S	Slave Address	w	А	Sub Address (n)	A	Data(n)	A	Data (n+1)	A	,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Data (n+m)	A	stp
	8-bit		1- bit	8-bit	1- bit	8-bit	1- bit	8-bit	1- bit		8-bit	1- bit	

(2) Read sequence

After receiving a read-mode salve address as the first byte, the AK8857 sends data in the second and subsequent bytes.

S	Slave Addres s	w	A	Sub Address (n)	A	rS	Slave Address	R	A	Data1	A	Data 2	A	Data3	A	63363
	8-bit		1	8-bit	1		8-bit		1	8-bit	1	8-bit	1	8-bit	1	

,,,,,,,,,,	"	Data n	!A	stp
		8-bit	1	

Symbols and abbreviations S : Start Condition rS : repeated Start Condition A : Acknowledge (SDA Low) !A : Not Acknowledge (SDA High) stp : Stop Condition R/W 1 : Read 0 : Write

.....

: Received from master device (normally microprocessor)

: Output by slave device (AK8857)

8. Register Definitions

Sub	Register	Default	R/W	Block	Function	
Address						
0000		000	R/W	Common		
0x01	AFE Control	0x01	R/W	Common	Analog front-end setting	
0x02	Output Control	0x00	R/W	Common	Output data setting	
0x03	Start and Delay Control	0x00	R/W	Common	Output data timing adjustment	
0x04	Control 1	0x00	R/W	Common	Control register type	
0x05	Control 2	0x00	R/W	Common	Control register type	
0x06	Pedestal Level Control	0x00	R/W	Common	Pedestal level adjustment	
0x07	Color Killer Control	0x08	R/W	Common	Color killer setting	
0x08	Image Control	0x00	R/W	Common	Image control setting	
0x09	High Slice Data Set	0xEB	R/W	Common	VBI slicer data high setting	
0x0A	Low Slice Data Set	0x10	R/W	Common	VBI slicer data low setting	
0x0B	PGA Control 1	0x3E	R/W	Common	PGA1 gain setting	
0x0C	PGA Control 2	0x3E	R/W	Common	PGA2 gain setting	
0x0D	Output Data Format A	0x00	R/W	А	Output data format setting	
0x0E	Input Video Standard A	0x00	R/W	А	Input video signal setting	
0x0F	NDMODE A	0x00	R/W	А	Auto detection limit setting	
0x10	Output Pin Control 0 A	0x00	R/W	А	Output pin status setting	
0x11	Output Pin Control 1 A	0x00	R/W	А	Output pin status setting	
0x12	AGC & ACC A Control	0x00	R/W	А	AGC and ACC setting	
0x13	Control 0 A	0x00	R/W	А	Control register type	
0x14	Contrast Control A	0x80	R/W	А	Contrast adjustment	
0x15	Brightness Control A	0x00	R/W	А	Brightness adjustment	
0x16	Saturation Control A	0x80	R/W	А	Saturation adjustment	
0x17	HUE Control A	0x00	R/W	А	Hue adjustment	
0x18	Request VBI Infomation A	0x00	R/W	А	VBI interval decode request	
0x19	Status 1 A		R	А	Internal status indicator	
0x1A	Status 2 A		R	А	Internal status indicator	
0x1B	Reserved		R	А	Reserved	
0x1C	Input Video Status A		R	А	Input signal detection indicator	
0x1D	Closed Caption 1 A		R	А	Closed caption data indicator	
0x1E	Closed Caption 2 A		R	А	Closed caption data indicator	
0x1F	WSS 1 A		R	А	WSS data indicator	
0x20	WSS 2 A		R	А	WSS data indicator	
0x21	Extended Data 1 A		R	А	CC-Extended data indicator	
0x22	Extended Data 2 A		R	А	CC-Extended data indicator	
Sub Address	Register	Default	R/W	Block	Function	
----------------	--------------------------	---------	-----	----------------------------	----------------------------------	
0x23	VBID 1 A		R	A	VBID data indicator	
0x24	VBID 2 A		R	А	VBID data indicator	
0x25	Output Data Format A	0x00	R/W	В	Output data format setting	
0x26	Input Video Standard B	0x00	R/W	В	Input video signal setting	
0x27	NDMODE B	0x00	R/W	В	Auto detection limit setting	
0x28	Output Pin Control 0 B	0x00	R/W	В	Output pin status setting	
0x29	Output Pin Control 1 B	0x00	R/W	В	Output pin status setting	
0x2A	AGC & ACC B Control	0x00	R/W	В	AGC and ACC setting	
0x2B	Control 0 B	0x00	R/W	В	Control register type	
0x2C	Contrast Control B	0x80	R/W	В	Contrast adjustment	
0x2D	Brightness Control B	0x00	R/W	В	Brightness adjustment	
0x2E	Saturation Control B	0x80	R/W	В	Saturation adjustment	
0x2F	HUE Control B	0x00	R/W	В	Hue adjustment	
0x30	Request VBI Infomation B	0x00	R/W	В	VBI interval decode request	
0x31	Status 1 B		R	В	Internal status indicator	
0x32	Status 2 B		R	В	Internal status indicator	
0x33	Reserved		R	В	Reserved	
0x34	Input Video Status B		R	В	Input signal detection indicator	
0x35	Closed Caption 1 B		R	В	Closed caption data indicator	
0x36	Closed Caption 2 B		R	В	Closed caption data indicator	
0x37	WSS 1 B		R	В	WSS data indicator	
0x38	WSS 2 B		R	В	WSS data indicator	
0x39	Extended Data 1 B		R	В	CC-Extended data indicator	
0x3A	Extended Data 2 B		R	В	CC-Extended data indicator	
0x3B	VBID 1 B		R	В	VBID data indicator	
0x3C	VBID 2 B		R	В	VBID data indicator	
0x3D	Device and Revision ID		R	Common Device ID and revis		

For all other registers, write-in is prohibited.

For all reserved registers, write-in must be limited to the default value.

"Common" is Common Register

To R/W register to A block and B block can be done by REGSEL bit setting of Sub-address"0x00". For R/W of [Input Channel Select], [PGA Control 1], [PGA Control 2], [Device and Revision ID] register, REGSEL bit setting is not necessary.

"A" is referred to A block register. "B" is referred to B block register.

9. Register settings overview

Input Channel Select Register (R/W) [Sub Address 0x00]

Input signal channel selection and clock mode selection register.

Sub Address 0x00Default Value: 0x00								
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	Bit 1	bit 0	
P1DRV1	P1DRV0	REGSEL	AINSEL4	AINSEL3	AINSEL2	AINSEL1	AINSEL0	
Default Value								
0	0	0	0	0	0	0	0	

Input Channel Select Register Definition

Bit	Register Name		R/W	Definition
bit 0 bit 4	AINSEL0 ~ AINSEL4	Analog Input Select	R/W	A block and B lock output video signal selection : [AINSEL4: AINSEL0] [00000]: [A]: AIN1(CVBS), [B]: AIN4(CVBS) [00011]: [A]: AIN1(CVBS), [B]: AIN3(CVBS) [00010]: [A]: AIN1(CVBS), [B]: AIN2(CVBS) [00101]: [A]: AIN1(CVBS), [B]: AIN1(CVBS) (*2) [00100]: [A]: AIN1(CVBS), [B]: AIN4(CVBS) [00110]: [A]: AIN2(CVBS), [B]: AIN4(CVBS) [00110]: [A]: AIN2(CVBS), [B]: AIN3(CVBS) [00111]: [A]: AIN2(CVBS), [B]: AIN2(CVBS) (*2) [01000]: [A]: AIN2(CVBS), [B]: AIN1(CVBS) [01011]: [A]: AIN2(CVBS), [B]: AIN1(CVBS) [01001]: [A]: AIN2(CVBS), [B]: AIN4(CVBS) [01011]: [A]: AIN3(CVBS), [B]: AIN4(CVBS) [01011]: [A]: AIN3(CVBS), [B]: AIN4(CVBS) [01011]: [A]: AIN3(CVBS), [B]: AIN4(CVBS) [01110]: [A]: AIN3(CVBS), [B]: AIN4(CVBS) [01111]: [A]: AIN4(CVBS), [B]: AIN4(CVBS) [10001]: [A]: AIN4(CVBS), [B]: AIN4(CVBS) [10011]: [A]: AIN4(CVBS), [B]: AIN4(CVBS) (*1) [10111]: [A]: Non-decode, [B]: AIN1(CVBS) (*1) [10111]: [A]: Non-decode, [B]: AIN1(CVBS) (*1) [10011]: [A]: AIN1(Y) / AIN3(C), [B]: Non-decode (*1, *2) [11001]: [A]: AIN1(Y) / AIN3(C), [B]: AIN1(Y) / AIN3(C) (*1, *2) [11001]: [A]: AIN2(Y) / AIN4(C), [B]: AIN4(C) (*1, *2) [11001]: [A]: Non-decode, [B]: AIN1(Y) / AIN3(C) (*1, *2) [11101]: [A]: Non-decode, [

bit 5	REGSEL	Register Select	R/W	Common register setting method selection (*2) [0]: A block : Write/ Read enable [1]: B block : Write/ Read enable
bit 6 ~ bit 7	P1DRV0 ~ P1DRV1	PVDD1 Drive	R/W	The digital P1 output pin buffer drive setting is set according to PVDD1 input voltage setting.(*3) [P1DRV1: P1DRV0] [00]: PVDD1 = 3.0 ~ 3.6V [01]: PVDD1 = 2.3 ~ 2.7V [10]: Reserved [11]: PVDD1 = 1.7 ~ 2.0V

- (*1) If [Non-decode] is select at the output block, the output pins will be in powersave mode and the internal digital circuit operational is stop. This will save the power consumption.
- (*2) If the output of A block and B block is selected from the same channel of input video signal, the setting of Sub-address0x01 [AFE Control Register] register only enable if REGSEL=[0] and disable if REGSEL=[1]. During S-video signal decode, the output block register setting is enable if REGSEL=[0] and disable if REGSEL=[1].
- (*3) Digital P1 pin: DATA_A[7:0], HD_ACT_A, VD_ACT_A, DVALID_A, FIELD_A, DATA_B[7:0], HD_ACT_B, VD_ACT_B, DVALID_B, FIELD_B, DTCLK pin.

AFE Control Register (R/W) [Sub Address 0x01] (Common Register)

Analog front end register setting.

R/W block is depends on REGSEL setting of Sub-Address "0x00".

Sub Address 0x0)1
-----------------	----

Default	Value	:	0x01
---------	-------	---	------

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
CLPWIDTH1	CLPWIDTH0	CLPSTAT1	CLPSTAT0	UDG1	UDG0	CLPG1	CLPG0
Default Value							
0	0	0	0	0	0	0	1

AFE Control Register 1 Definition

Bit	Register Name		R/W	Definition
bit 0 ~ bit 1	CLPG 0 ~ CLPG1	Clamp Gain	R/W	Set the current value of fine clamp in analog block [00]: Min. [01]: Middle 1 (Default) [10]: Middle 2 [11]: Max
bit 2 ~ bit 3	UDG 0 ~ UDG 1	Up Down Gain	R/W	Set the current value of rough clamp in analog block. [00]: Min. (Default) [01]: Middle 1 [10]: Middle 2 [11]: Max
bit 4 ~ bit 5	CLPSTAT0 ~ CLPSTAT1	Clamp Start	R/W	Set the position of clamp pulse [CLPSTAT1 : CLPSTAT0] [00] : Center of horizontal sync [01] : (1/128) H delay [10] : (2/128) H advance [11] : (1/128) H advance
bit 6 ~ bit 7	CLPWIDTH0 ~ CLPWIDTH1	Clamp Pulse Width	R/W	Set the width of clamp pulse. [CLPWIDTH1 : CLPWIDTH0] [00] : 296nsec [01] : 593nsec [10] : 1.1usec [11] : 2.2usec

If the output of A block and B block is selected from the same channel of input video signal, the setting of Sub-address0x01 [AFE Control Register] register only enable if REGSEL=[0] and disable if REGSEL=[1].

During S-video signal decode, the output block register setting is enable if REGSEL=[0] and disable if REGSEL=[1].

Output Control Register (R/W) [Sub Address 0x02] (Common register)

Output data setting register.

R/W block is depends on REGSEL setting of Sub-Address "0x00".

Sub Address 0x02 Default Value: 0x00								
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
VBIDEC1	VBIDEC0	SLLVL	TRSVSEL	601LIMIT	VBIL2	VBIL1	VBIL0	
Default Value								
0	0	0	0	0	0	0	0	

Output Format Register Definition

Bit	Register Name		R/W	Definition
bit 0 ~ bit 2	VBIL0 VBIL2	Vertical Blanking Length	R/W	VACT signal active starting position adjustment. [VBIL2 : VBIL0] [000]: Default [001]: 1Line (2Line*) advance [010]: 2Line (4Line*) advance [011]: 3Line (6Line*) advance [100]: 4Line (8Line*) advance [101]: 5Line (10Line*) advance [110]: 6Line (12Line*) advance [111]: 7Line (14Line*) advance
bit 3	601LIMIT	601 Output Limit	R/W	Output data code limit (Min-Max) setting [0] : 1-254 (Y/Cb/Cr) [1] : 16-235 (Y) /16-240 (Cb/Cr)
bit 4	TRSVSEL	Time Reference Signal V Select	R/W	Setting of lines for "Time reference signal" V-bit value change in ITU-R BT.656 format With 525-line input Setting [0]: V=1 (lines 1~9 and 264~272) V=0 (lines 10~263 and 273~525) Setting [1]: V=1 (lines 1~19 and 264~282) V=0 (lines 20~263 and 283~525) With 625-line input Always (regardless of setting in this register): V=1 (lines 1~22 and 311~335) V=0 (lines 23~310 and 336~623)
bit 5	SLLVL	Slice Level	R/W	Slice level setting [0] : Slice level approx. 25 IRE [1] : Slice level approx. 50 IRE
bit 6 ~ bit 7	VBIDEC0 ~ VBIDEC1	VBI Decode	R/W	Setting for type of data output during interval set in Vertical Blanking Interval register * [VBIDEC1 : VBIDEC0] [00] : Black level data output [01] : Monochrome data output [10] : Slice result data output [11] : Reserved

*Only support progressive output size of ITU-R BT.601, VGA, WVGA format.

Start and Delay Control Register (R/W) [Sub Address 0x03] (Common register)

Output data timing adjustment register.

R/W block is depends on REGSEL setting of Sub-Address "0x00".

Sub Address 0x03

Default Value : 0x00

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0		
VLOCKSEL	ACTSTA2	ACTSTA1	ACTSTA0	Reserved	YCDELAY2	YCDELAY1	YCDELAY0		
Default Value									
0	0	0	0	0	0	0	0		

Start and Delay Control Register Definition

Bit	Register Name		R/W	Definition
bit 0 ~ bit 2	YCDELAY0 ~ YCDELAY2	Y/C Delay Control	R/W	Adjustment of Y and C timing. [YCDELAY2 : YCDELAY0] [001] : Y advance 1sample toward C. [010] : Y advance 2sample toward C. [011] : Y advance 3sample toward C. [000] : No Delay and advance. [101] : Y delay 3 sample toward C. [110] : Y delay 2 sample toward C. [111] : Y delay 1 sample toward C. [100] : Reserved
bit 3	Reserved	Reserved	R/W	Reserved
bit 4 ~ bit 6	ACTSTA0 ~ ACTSTA2	Active Video Start Control	R/W	Fine-tuning video data decode start position by delay or advance in 1-sample units. [ACTSTA2: ACTSTA0] [001]: 1-sample delay [010]: 2-sample delay [011]: 3-sample delay [000]: Normal start position [101]: 3-sample advance [110]: 2-sample advance [111]: 1-sample advance [100]: Reserved
bit 7	VLOCKSEL	Vlock Select	R/W	Select of internal operation with the input signal frame structure [0]: PLL SYNC VLOCK [1]: Direct SYNC VLOCK

Control 1 Register (R/W) [Sub Address 0x04] (Common register)

Control register setting.

R/W block is depends on REGSEL setting of Sub-Address "0x00".

Sub Addres	s 0x04					Default Valu	ie: 0x00	
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
Reserved	EAVSAV	CLKINV	INTPOLOFF	Reserved	UVFILSEL	YCSEP1	YCSEP0	
Default Value								
0	0	0	0	0	0	0	0	

Control 1 Register Definition

Bit	Register Name		R/W	Definition
bit 0 ~ bit 1	YCSEP0 ~ YCSEP1	YC Separation Control	R/W	Y/C separation setting [YCSEP1 : YCSEP0] [00] : Adaptive Y/C separation [01] : 1-dimensional Y/C separation [10] : 2-dimensional Y/C separation [11] : Reserved
bit 2	UVFILSEL	UV Filter Select	R/W	UV filter setting [0]: Wide [1]: Narrow
bit 3	Reserved	Reserved	R/W	Reserved
bit 4	INTPOLOFF	Interpolator Mode Select	R/W	Pixel interpolator setting [0]: ON [1]: OFF
bit 5	CLKINV	CLK Invert Set	R/W	DTCLK signal output polarity selection [0] : Normal output (write in data at rising edge) [1] : Data and clock reversed (write in data at falling edge)
bit 6	EAVSAV	EAV/ SAV SELECT	R/W	EAV/SAV sync code add setting [0]: Sync code is added [1]: not added.
bit 7	Reserved	Reserved	R/W	Reserved

Asahi**KASEI**

Control 2 Register (R/W) [Sub Address 0x05] (Common register)

Control register setting.

R/W block is depends on REGSEL setting of Sub-Address "0x00".

Default Value : 0x00

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
CKILSEL	STUPATOFF	Reserved	Reserved	Reserved	Reserved	DPAL1	DPAL0
Default Value							
0	0	0	0	0	0	0	0

Control 2 Register Definition

Bit	Register Name		R/W	Definition
bit 0	DPAL0		RM	Setting for color averaging* (PAL phase correction block) [DPAL1 : DPAL0] [001 : Adaptive phase correction ON
bit 1	DPAL1			[00] : Phase correction ON [10] : Phase correction OFF [11] : Reserved
bit 2 ~ bit 5	Reserved	Reserved	R/W	Reserved
bit 6	STUPATOFF	Setup Auto Control Off	R/W	Setup auto switching setting (ON/OFF) in auto signal detection mode [0] : Auto setup switching ON [1] : Auto setup switching OFF
bit 7	CKILSEL	Color killer Select	R/W	Color killer activation setting [0] : Activation when burst color level is below CKLVL[3:0]-bits threshold setting [1] : Activation when burst color level is below CKLVL[3:0]-bits threshold setting or color decode PLL lock fails

Pedestal Level Control Register (R/W) [Sub Address 0x06] (Common register)

Pedestal level adjustment setting register.

R/W block is depends on REGSEL setting of Sub-Address "0x00".

Sub Addres	s 0x06
------------	--------

Default Value : 0x00

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
DPCC1	DPCC0	DPCT1	DPCT0	BKLVL3	BKLVL2	BKLVL1	BKLVL0	
Default Value								
0	0	0	0	0	0	0	0	

Pedestal Level Control Register Definition

Bit	Register Name		R/W	Definition
bit 0 ~ bit 3	BKLVL0 ~ BKLVL3	Black Level	R/W	Setting for change from current pedestal level by adding to or subtracting from black level [BKLVL3 : BKLVL0] [0001] : Add 1 [0010] : Add 2 [0011] : Add 3 [0100] : Add 4 [0101] : Add 5 [0110] : Add 6 [0111] : Add 7 [0000] : Default [1000] : Subtract 8 [1001] : Subtract 8 [1001] : Subtract 7 [1010] : Subtract 7 [1010] : Subtract 5 [1100] : Subtract 4 [1101] : Subtract 3 [1110] : Subtract 2 [1111] : Subtract 1
bit 4 ~ bit 5	DPCT0 ~ DPCT1	Digital Pedestal Clamp Control	R/W	Time-constant setting for digital pedestal clamp [DPCT1 : DPCT0] [00] : Fast [01] : Middle [10] : Slow [11] : Disable
bit 6 ~ bit 7	DPCC0 ~ DPCC1	Digital Pedestal Clamp Coring Control	R/W	Non-sensing bandwidth setting for digital pedestal clamp [DPCC1 : DPCC0] [00] : ±1bit [01] : ±2bit [10] : ±3bit [11] : No non-sensing band

Asahi KASEI

Color Killer Control Register (R/W) [Sub Address 0x07] (Common register)

Color killer setting register

R/W block is depends on REGSEL setting of Sub-Address "0x00".

Sub Address	6 0x07					Default Val	ue : 0x08
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
COLKILL	CONTSEL	CKSCM1	CKSCM0	CKLVL3	CKLVL2	CKLVL1	CKLVL0
Default Value							
0	0	0	0	1	0	0	0

Color Killer Control Register Definition

Bit	Register Name		R/W	Definition
bit 0 ~		Color Killer Level Control	R/W	Burst level setting for color killer activation Default value, approx. −23 dB
bit 1	CKSCMO			Puret lovel setting for color killer activation in
~	~	Color Killer Level for	R/W	SECAM mode
bit 5	CKSCM1	SECAM		Adds 2 bits to CKLVL[3:0]
bit 6	CONTSEL	Contrast Select	R/W	Contrast selector [0] : toward luminance of 128 [1] : toward luminance of 0
				Color killer ON/OFF setting
bit 7 C	COLKILL	Color killer Set	R/W	[0] : Enable [1] : Disable

MS1189-E-01

Image Control Register (R/W) [Sub Address 0x08] (Common register)

Sharpness control, Luminance bandwidth filter control, Sepia color output setting and VBI interval setting register.

R/W block is depends on REGSEL setting of Sub-Address "0x00".

Sub Address 0x08 Default Value : 0x00							
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
VBIIMGCTL	SEPIA	LUMFIL1	LUMFIL0	SHCORE1	SHCORE0	SHARP1	SHARP0
Default Value							
0	0	0	0	0	0	0	0

Image Control Register Definition

Bit	Register Name		R/W	Definition
bit 0 ~ bit 1	SHARP0 ~ SHARP1	Sharpness Control	R/W	Sharpness control (filter effect) setting [SHARP1 : SHARP0] [00] : No filtering [01] : Min effect [10] : Middle effect [11] : Max effect
bit 2 ~ bit 3	SHCORE0 ~ SHCORE1	Sharpness Coring	R/W	Setting for level of coring after passage through sharpness filter Enabled except with [SHARP1:SHARP0] register setting of [00] [SHCORE1 : SHCORE0] [00] : No coring [01] : ±1LSB [10] : ±2LSB [11] : ±3LSB
bit 4 ~ bit 5	LUMFIL0 ~ LUMFIL1	Luminance Filter	R/W	Setting for luminance band limit filter [LUMFIL1 : LUMFIL0] [00] : No filtering [01] : Narrow [10] : Mid [11] : Wide
bit 6	SEPIA	Sepia Output	R/W	Setting (ON/OFF) for sepia coloring of decode results * [0]: Normal output [1]: Sepia output
bit 7	VBIIMGCTL	VBI Image Control	R/W	Setting (ON/OFF) for image adjustment during brightness and contrast adjustment VBI* [0]: Image adjustment inactive during VBI [1]: Image adjustment active during VBI

* DOA register of Sub-address "0x10" and DOB register of Sub-address "0x28" setting takes priority regardless to above SEPIA register setting.

High Slice Data Set Register (R/W) [Sub Address 0x09] (Common register)

Register for setting sliced data from VBI slicer to High value (Default code is 235). R/W block is depends on REGSEL setting of Sub-Address "0x00".

~ ~~

Sub Address 0x09 Default Value : 0xEB							
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
H7	H6	H5	H4	H3	H2	H1	H0
Default Value							
1	1	1	0	1	0	1	1

High Slice Data Set Register Definition

Bit	Register Name		R/W	Definition
bit 0	HO			Register for setting sliced data from VBI slicer to High value (Default code is 235)
~ bit 7	~ H7	High Data 0~7 Set	R/W	Important: Corresponds to 601 special code if set to 0x00 or 0xFF

Low Slice Data Set Register (R/W) [Sub Address 0x0A] (Common register)

Register for setting sliced data from VBI slicer to Low value (Default code is 16) R/W block is depends on REGSEL setting of Sub-Address "0x00".

Sub Address 0x0A

Default Value : 0x10 bit 7 bit 6 bit 5 bit 4 bit 0 bit 3 bit 2 bit 1 L7 L6 L 5 L 4 L 3 L 2 L 1 L 0 **Default Value** 0 0 0 1 0 0 0 0

Low Slice Data Set Register Definition

Bit	Register Name		R/W	Definition
bit 0	LO			Register for setting sliced data from VBI slicer to Low value (Default code is 16)
~	~ -	Low Data 0~7 Set	R/W	Important: Corresponds to 601 special code if set
bit 7	L7			to 0x00 or 0xFF

PGA Control 1 Register (R/W) [Sub Address 0x0B]

PGA1 control register

In case of CVBS signal decode, its control the gain setting for A block output. In case of S-Videosignal decode, its control the gain setting for Y signal output.

Sub Address 0x0B

Default Value : 0x1F

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
PGA1_7	PGA1_6	PGA1_5	PGA1_4	PGA1_3	PGA1_2	PGA1_1	PGA1_0	
Default Value	9							
0	0	1	1	1	1	1	0	

PGA Control 1 Register Definition

Bit	Register Name		R/W	Definition
bit 0	PGA1_0			
~	~	PGA1 Gain Set	R/W	PGA gain setting, in steps of approx. 0.1 dB
bit 7	PGA1_7			

*1 When CVBS signal decode, if the output of A block and B block is the same video signal, only PGA1 control register is enable and PGA2 control register is disable.

*2 When CVBS signal decode, if the output block is selected to [non-decode], the gain setting is set to "0x00" value.

PGA Control 2 Register (R/W) [Sub Address 0x0C]

PGA2 control register

In case of CVBS signal decode, its control the gain setting for B block output. In case of S-Videosignal decode, its control the gain setting for C signal output.

Sub Address 0x0C Default Value : 0x1F								
bit 7	Bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
PGA2_7	PGA2_6	PGA2_5	PGA2_4	PGA2_3	PGA2_2	PGA2_1	PGA2_0	
Default Value	9							
0	0	1	1	1	1	1	0	

PGA Control 2 Register Definition

Bit	Register Name		R/W	Definition
bit 0	PGA2_0			
~	~	PGA2 Gain Set	R/W	PGA gain setting, in steps of approx. 0.1 dB
bit 7	PGA2_7			

*1 When CVBS signal decode, if the output of A block and B block is the same video signal, only PGA1 control register is enable and PGA2 control register is disable.

*2 When CVBS signal decode, if the output block is selected to [non-decode], the gain setting is set to "0x00" value.

Output Data Format A Register (R/W) [Sub Address 0x0D] (A block register) Output Data Format A Register (R/W) [Sub Address 0x25] (B block register)

Output Data format setting register. This register is applied to set the A block output data.

Sub Address 0x0D, 0x25

Default Value: 0x00

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Reserved	Reserved	Decented	ODEVA	ODFORMA3	ODFORMA2	ODFORMA1	ODFORMA0
		Reserved	ODEVB	ODFORMB3	ODFORMB2	ODFORMB1	ODFORMB0
Default Value							
0	0	0	0	0	0	0	0

Output Data Format A Register Definition

Bit	Register Name		R/W	Definition
bit 0 ~ bit 3	ODFORMA/B0 ~ ODFORMA/B3	Output Data Format_A/B	R/W	Output data format selection : [ODFORMA/B3: ODFORMA/B0] [0000] : 601 (Interlace) (525 line : 720x487) (625 line : 720x576) [0001] : 601 (Progressive, 60frm/s) (525 line : 720x487) (625 line : 720x576) [0010] : 601 (Progressive, 30frm/s) (525 line : 720x487) (625 line : 720x576) [0011]: WVGA (Interlace) (800x480) [0102]: WVGA (Progressive, 60frm/s) (800x480) [0101]: WVGA (Progressive, 30frm/s) (800x480) [0110]: VGA (Interlace) (640x480) [0111]: VGA (Interlace) (640x480) [0111]: VGA (Progressive, 30frm/s) (640x480) [1001]: VGA (Progressive, 30frm/s) (400x240) [1011]: QVGA (Progressive, 30frm/s) (400x240) [1011]: EGA (Progressive, 30frm/s) (400x234) [1101]: WEGA1 (Progressive, 30frm/s) (480x234)
bit 4	ODEVA/B	ODD EVEN Select_A/B	R/W	Decode field selection during (Progressive, 30frm/s) output. [0]: ODD FIELD [1]: EVEN FIELD
bit 5 ~ bit 7	Reserved	Reserved	R/W	Reserved

Input Video Standard A Register (R/W) [Sub Address 0x0E] (A Block Register) Input Video Standard A Register (R/W) [Sub Address 0x26] (B Block Register)

This register is applied to set the analog input signal.

Sub Address 0x0F 0x26

Sub Address 0x0E, 0x26 Default Value: 0x00							
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
AUTODETA	SETUPA	BWA	VLFA	VCENA1	VCENA0	VSCFA1	VSCFA0
AUTODETB	SETUPB	BWB	VLFB	VCENB1	VCENB0	VSCFB1	VSCFB0
Default Value							
0	0	0	0	0	0	0	0

Input Video Standard A/B Register Definition

Bit	Register Name		R/W	Definition
bit 0 ~ bit 1	VSCFA/B 0 ~ VSCFA/B 1	Video Sub-Carrier Frequency_A/B	R/W	Input video signal subcarrier frequency setting [VSCFA/B 1 : VSCFA/B 0] (MHz) [00] : 3.57954545 (NTSC-M,J) [01] : 3.57561149 (PAL-M) [10] : 3.58205625 (PAL-Nc) [11] : 4.43361875 (PAL-B,D,G,H,I,N,60,NTSC-4.43, SECAM)* ¹
bit 2 ~ bit 3	VCENA/B 0 ~ VCENA/B 1	Video Color Encode_A/B	R/W	Input signal color encode format setting [VCENA/B 1 : VCENA/B 0] [00] : NTSC [01] : PAL [10] : SECAM [11] : Reserved
bit 4	VLFA/B	Video Line Frequency_A/B	R/W	Input signal line frequency setting [0] : 525 line (NTSC-M,J , NTSC-4.43 , PAL-M,60) [1] : 625 line (PAL-B,D,G,H,I,N , PAL-Nc , SECAM)
bit 5	BWA/B	Black & White_A/B	R/W	Monochrome mode (ON/OFF) setting * ² [0] : Monochrome mode OFF [1] : Monochrome mode ON
bit 6	SETUPA/B	Setup_A/B	R/W	Setup process setting [0] : Process as input signal with no setup [1] : Process as input signal with setup
bit 7	AUTODETA/B	Video Standard Auto Detect_A/B	R/W	Input signal auto detection setting * ³ [0]: OFF (auto detection disabled; set manually) [1]: ON (auto detection enabled)

*¹ For SECAM input signal, change VSCF[1:0] setting to [11].

*² DOA register of Sub-address "0x10" and DOB register of Sub-address "0x28" setting takes priority regardless to above BW register setting.

*³ "Auto detection function" must not use when it is being operated on Direct SYNC VLOCK (Sub-Address0x03[7]=1).

NDMODE A Register (R/W) [Sub Address 0x0F] (A block register) NDMODE B Register (R/W) [Sub Address 0x27] (B block register) For limiting auto input video signal detection candidates of A block output data.

Sub Address 0x0F, 0x27Default Value: 0x00								
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
ND625LA	ND525LA	NDPAL60A	NDNT443A	Reserved	NDSECAMA	NDPALNCA	NDPALMA	
ND625LB	ND525LB	NDPAL60B	NDNT443B	Reserved	NDSECAMB	NDPALNCB	NDPALMB	
Default Value								
0	0	0	0	0	0	0	0	

NDMODE A/B Register Definition

Bit	Register Name		R/W	Definition
bit 0	NDPALMA/B	No Detect PAL-M_A _{/B}	R/W	[0] : PAL-M candidate [1] : PAL-M non-candidate
bit 1	NDPALNCA/B	No Detect PAL-Nc_A/B	R/W	[0] : PAL-Nc candidate [1] : PAL-Nc non-candidate
bit 2	NDSECAMA/B	No Detect SECAM_A/B	R/W	[0] : SECAM candidate [1] : SECAM non-candidate
bit 3	Reserved	Reserved	R/W	Reserved
bit 4	NDNT443A/B	No Detect NTSC-4.43_A/B	R/W	[0] : NTSC-4.43 candidate [1] : NTSC-4.43 non-candidate
bit 5	NDPAL60A/B	No Detect PAL-60_A/B	R/W	[0] : PAL-60 candidate [1] : PAL-60 non-candidate
bit 6	ND525LA/B	No Detect 525Line_A/B	R/W	[0] : 525 line candidate [1] : 525 line non-candidate
bit 7	ND625LA/B	No Detect 625Line_A/B	R/W	[0] : 625 line candidate [1] : 625 line non-candidate

In making the above register settings, the following restrictions are apply,

- [1] Setting both NDNT443A/B (bit 4) and NDPAL60A/B (bit 5) to [1] (High) is prohibited.
- [2] Setting both ND525LA/B (bit 6) and ND625LA/B (bit 7) to [1] (High) is prohibited.
- [3] To limit candidate formats, it is necessary to have the auto detection mode OFF while first setting the register to non-limited signal status and next the NDMODE settings, and then setting the auto detection mode to ON.

Output Pin Control 0 A Register (R/W) [Sub Address 0x10] (A block register) Output Pin Control 0 B Register (R/W) [Sub Address 0x28] (B block register)

A block output pin output status setting

Sub Address 0x10, 0x28 Default Value: 0x00								
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
Descent	FLA	HDACTLA	NLA	DVALIDLA	VDACTLA	DOA1	DOA0	
Reserved	FLB	HDACTLB	NLB	DVALIDLB	VDACTLB	DOB1	DOB0	
Default Value								
0	0	0	0	0	0	0	0	

Output Control 0 A/B Register Definition

Bit	Register Name		R/W	Definition
bit 0 ~ bit 1	DOA/B 0 ~ DOA/B 1	Data Output _A/B	R/W	[00]: Normal output [01]: DATA_A/B [7: 0] pin output fixed at Low [10]: Black level output [11]: Blue level output
bit 2	VDACTLA/B	VD/ VACT Low_A/B	R/W	[0] : Normal output [1]: VD_ACT_A/B pin output fixed at low.
bit 3	DVALIDLA/B	DVALID Low_A/B	R/W	[0] : Normal output [1]: DVALID_A/B pin output fixed at low.
bit 4	NLA/B	NSIG Low_A/B	R/W	[0] : Normal output [1] : NSIG_A/B pin output fixed at low
bit 5	HDACTLA/B	HD/HACT Low_A/B	R/W	[0] : Normal output [1]: HD_ACT_A/B pin output fixed at low.
bit 6	FLA/B	FIELD_A/B	R/W	[0] : Normal output [1] : FIELD_A/B pin output fixed at low
bit 7	Reserved	Reserved	R/W	Reserved

Note: Output control via pins OE_A, OE_B, PDN, RSTN and AINSEL[4:0] (Non-decode) takes priority, regardless of the above settings.

Output Pin Control 1 A Register (R/W) [Sub Address 0x11] (A block register) Output Pin Control 1 B Register (R/W) [Sub Address 0x29] (B block register)

A block output pin status setting register.

Sub Addres		Default Value : 0x00						
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
Reserved	Reserved	HDACTSELA	VDACTSELA	FIELDA	DVALIDA	VDACTA	HDACTA	
		HDACTSELB	VDACTSELB	FIELDB	DVALIDB	VDACTB	HDACTB	
Default Value								
0	0	0	0	0	0	0	0	

Output Control 1 A/B Register Definition

Bit	Register Name		R/W	Definition
bit 0	HDACTA/B	HD_ACT_A/B Pin Polarity	R/W	HD_ACT_A/B pin output polarity setting. [0] : Active Low [1] : Active High
bit 1	VDACTA/B	VD_ACT_A/B Pin Polarity	R/W	VD_ACT_A/B pin output polarity setting. [0]: Active Low [1]: Active High
bit 2	DVALIDA/B	DVALID_A/B Pin Polarity	R/W	DVALID_A/B pin output polarity setting. [0]: Active Low [1]: Active High
bit 3	FIELDA/B	FIELD_A/B Pin Polarity	R/W	FIELD_A/B pin output polarity setting. [0]: Active Low [1]: Active High
bit 4	VDACTSELA/B	VD/ VACT Select_A/B	R/W	VD_ACT_A/B pin output signal selection : [0] : VD signal is output. [1] : VACT signal is output.
bit 5	HDACTSELA/B	HD/ HACT Select_A/B	R/W	HD_ACT_A/B pin output signal selection : [0] : HD signal is output. [1] : HACT signal is output.
bit 6 ~ bit 7	Reserved	Reserved	R/W	Reserved

Note: Output control via pins OE_A, OE_B, PDN and RSTN takes priority, regardless of the above settings.

AGC & ACC A Control Register (R/W) [Sub Address 0x12] (A block register) AGC & ACC B Control Register (R/W) [Sub Address 0x2A] (B block register)

AGC and ACC setting register.

Sub Address 0x12, 0x2A

Sub Address 0x12, 0x2A Deladit value : 0x00									
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0		
ACCFRZA	ACCA1	ACCA0	AGCFRZA	AGCCA1	AGCCA0	AGCTA1	AGCTA0		
ACCFRZB	ACCB1	ACCB0	AGCFRZB	AGCCB1	AGCCB0	AGCTB1	AGCTB0		
Default Value									
0	0	0	0	0	0	0	0		

AGC & ACC A/B Control Register Definition

Bit	Register Name		R/W	Definition
bit 0 ~ bit 1	AGCTA/B 0 ~ AGCTA/B 1	AGC Time Constant_A/B	R/W	AGC time constant (T) setting* (if disabled, PGA can be set manually) [AGCT1 : AGCT0] [00] : Disable [01] : Fast [T = 1Field] [10] : Middle [T =7Fields] [11] : Slow [T = 29Fields]
bit 2 ~ bit 3	AGCCA/B 0 ~ AGCCA/B 1	AGC Coring Control_A/B	R/W	AGC non-sensing bandwidth (LSB) setting [AGCC1 : AGCC0] [00] : ±2LSB [01] : ±3LSB [10] : ±4LSB [11] : No non-sensing band
bit 4	AGCFRZA/B	AGC Freeze_A/B	R/W	AGC freeze function (ON/OFF) setting (AGC set values are saved during freeze) [0] : Non-frozen [1] : Frozen
bit 5 ~ bit 6	ACCTA/B 0 ~ ACCTA/B 1	ACC Time Constant_A/B	R/W	ACC time constant (T) setting [ACCT1 : ACCT0] [00] : Disable [01] : Fast [T = 2Fields] [10] : Middle [T =8Fields] [11] : Slow [T = 30Fields]
bit 7	ACCFRZA/B	ACC Freeze_A/B	R/W	ACC freeze function (ON/OFF) setting (ACC set values are saved during freeze) [0] : Non-frozen [1] : Frozen

Control 0 A Register (R/W) [Sub Address 0x13] (A block register) Control 0 B Register (R/W) [Sub Address 0x2B] (B block register)

Sub Address 0x13, 0x2B Default Value: 0x00								
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
Reserved	NSIGMDA1	NSIGMDA0	C443FILA1	C443FILA0	C358FILA1	C358FILA0	AGCTLA	
	NSIGMDB1	NSIGMDB0	C443FILB1	C443FILB0	C358FILB1	C358FILB0	AGCTLB	
Default Value								
0	0	0	0	0	0	0	0	

Control 0 A/B Register Definition

Bit	Register Name		R/W	Definition
bit 0	AGCTLA/B	AGC Transition Level_A/B	R/W	Transition speed setting, between peak AGC and sync AGC [0] : Quick [1] : Slow
bit 1 ~ bit 2	C358FILA/B 0 ~ C358FILA/B 1	C Filter_358 Select_A/B	R/W	C-filter bandwidth setting, for 3.58 MHz subcarrier system signal [C358FILA/B 1 : C358FILA/B 0] [00] : 3.58 Narrow [01] : 3.58 Medium [10] : 3.58 Wide [11] : Reserved
bit 3 ~ bit 4	C443FILA/B 0 ~ C443FILA/B 1	C Filter_443 Select_A/B	R/W	C-filter bandwidth setting, for 4.43 MHz subcarrier system signal [C443FILA/B 1 : C443FILA/B 0] [00] : 4.43 Narrow [01] : 4.43 Medium [10] : 4.43 Wide [11] : Reserved
bit 5 ~ bit 6	NSIGMDA/B 0 ~ NSIGMDA/B 1	No Signal Output Mode_A/B	R/W	Setting for output on no-signal detection * [NSIGMDA/B 1 : NSIGMDA/B 0] [00] : Black-level output [01] : Blue-level (Blueback) output [10] : Input status (sandstorm) output [11] : Reserved
bit 7	Reserved	Reserved	R/W	Reserved

* DOA/B[1:0] register of Sub-address"0x01/0x28" takes priority regardless to no-signal detection setting adjustment above when the DOA/B[1:0] register value is set other than [00].

Contrast Control A Register (R/W) [Sub Address 0x14] (A block register) Contrast Control B Register (R/W) [Sub Address 0x2C] (B block register)

Contrast adjustment setting register.

Sub Address 0x14, 0x2CDefault Value: 0x80								
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
CONTA7	CONTA6	CONTA5	CONTA4	CONTA3	CONTA2	CONTA1	CONTA0	
CONTB7	CONTB6	CONTB5	CONTB4	CONTB3	CONTB2	CONTB1	CONTB0	
Default Value								
1	0	0	0	0	0	0	0	

Contrast Control A/B Register Definition

Bit	Register Name		R/W	Definition
bit 0	CONTA/B 0			Register for contrast adjustment in steps of
~	~	Contrast Control_A/B	R/W	1/128 in range 1~255/128 from default
bit 7	CONTA/B 7			value of 0x80

Brightness Control A Register (R/W) [Sub Address 0x15] (A block register) Brightness Control B Register (R/W) [Sub Address 0x2D] (B block register)

Brightness adjustment setting register

Sub Address 0x15, 0x2D Default Value: 0x00							
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
BRA7	BRA6	BRA5	BRA4	BRA3	BRA2	BRA1	BRA0
BRB7	BRB6	BRB5	BRB4	BRB3	BRB2	BRB1	BRB0
Default Value							
0	0	0	0	0	0	0	0

Brightness Control A/B Register Definition

Bit	Register Name		R/W	Definition
bit 0	BRA/B0			Pegister for brightness adjustment in steps
~	~	Brightness Control_A/B	R/W	of 4 by 0 bit code cotting in 0's complement
bit 7	BRA/B7			of 1 by 8-bit code setting in 2 s complement

Saturation Control A Register (R/W) [Sub Address 0x16] (A block register) Saturation Control B Register (R/W) [Sub Address 0x2E] (B block register)

Saturation adjustment setting register

Sub Addres	Sub Address 0x16, 0x2E Default Value: 0x80							
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
SATA7	SATA6	SATA5	SATA4	SATA3	SATA2	SATA1	SATA0	
SATB7	SATB6	SATB5	SATB4	SATB3	SATB2	SATB1	SATB0	
Default Value								
1	0	0	0	0	0	0	0	

Saturation Control A/B Register Definition

Bit	Register Name		R/W	Definition
bit 0	SATA/B0			Register for saturation level adjustment in
~	~	Saturation Control_A/B	R/W	steps of 1/128 in range 1~255/128 from
bit 7	SATA/B7			default value of 0x80 (CVBS or S-video input)

HUE Control A Register (R/W) [Sub Address 0x17] (A block register) HUE Control B Register (R/W) [Sub Address 0x2F] (B block register)

HUE adjustment setting register.

Sub Address 0x17, 0x2FDefault Value : 0x00							
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
HUEA7	HUEA6	HUEA5	HUEA4	HUEA3	HUEA2	HUEA1	HUEA0
HUEB7	HUEB6	HUEB5	HUEB4	HUEB3	HUEB2	HUEB1	HUEB0
Default Value							
0	0	0	0	0	0	0	0

HUE Control A/B Register Definition

Bit	Register Name		R/W	Definition
bit 0	HUEA/B0			Pegister for hue adjustment in steps of
~	~	HUE Control_A/B	R/W	Register for file adjustment in steps of
bit 7	HUEA/B7	_		1/256 in range ±45° in 2's complement

Request VBI Infomation A Register (R/W) [Sub Address 0x18] (A block register) Request VBI Infomation B Register (R/W) [Sub Address 0x30] (B block register)

Data decode request during VBI interval setting register.

Sub Address 0x18 0x30

Sub Address 0x18, 0x30Default Value: 0x00							
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Decemied	Descend Descend		WSSRQA	VBIDRQA	EXTRQA	CCRQA	
Reserved	Reserved	Reserved	Reserved	WSSRQB	VBIDRQB	EXTRQB	CCRQB
Default Value							
0	0	0	0	0	0	0	0

Request VBI Infomation A/B Register Definition

Bit	Register Name		R/W	Definition
bit 0	CCRQA/B	Closed Caption Decode Request_A/B	R/W	Setting (ON/OFF) for closed caption decode request [0] : No request (OFF) [1] : Request (ON)
bit 1	EXTRQA/B	Extended Data Decode Request_A/B	R/W	Setting (ON/OFF) for Extended Data decode request [0] : No request (OFF) [1] : Request (ON)
bit 2	VBIDRQA/B	VBID Decode Request_A/B	R/W	Setting (ON/OFF) for VBID decode request [0] : No request (OFF) [1] : Request (ON)
bit 3	WSSRQA/B	WSS Decode Request_A/B	R/W	Setting (ON/OFF) for WSS decode request [0] : No request (OFF) [1] : Request (ON)
bit 4 ~ bit 7	Reserved	Reserved	R/W	Reserved

Status 1 A Register (R) [Sub Address 0x19] (A block register) Status 1 B Register (R) [Sub Address 0x31] (B block register)

Sub Address 0x19, 0x31

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
OVCOLA	PKWHITEA	Reserved	CPLLA	COLKILONA	FRMSTDA	VLOCKA	NOSIGA
OVCOLB	PKWHITEB	Reserved	CPLLB	COLKILONB	FRMSTDB	VLOCKB	NOSIGB

Status 1 A/B Register Definition

Bit	Register Name		R/W	Definition
bit 0	NOSIGA/B	No Signal_A/B	R	Input signal indicator [0] : Input signal present [1] : Input signal absent
bit 1	VLOCKA/B	Video Locked_A/B	R	Input signal VLOCK synchronization status indicator [0]: Input signal synchronized [1]: Input signal non-synchronized
bit 2	FRMSTDA/B	Frame Standard_A/B	R	Input signal interlace status indicator [0]: Input signal 525/625 interlaced [1]: Input signal not 525/625 interlaced
bit 3	COLKILONA/B	Color Killer_A/B	R	Color killer status indicator * ¹ [0]: Color killer not operation [1]: Color killer operation
bit 4	CPLLA/B	Color PLL Lock_A/B		PLL clock locked status indicator [0]: No locked [1]: Locked
bit 5	Reserved	Reserved	R	Reserved
bit 6	PKWHITEA/B	Peak White Detection_A/B	R	Luminance decode result flow status indicator,after passage through AGC block [0]: Normal [1]: Overflow
bit 7	OVCOLA/B	Over Color Level_A/B	R	Color decode result flow status indicator, after passage through ACC block* ² [0]: Normal [1]: Overflow (excessive color signal input)

Status 2 A Register (R) [Sub Address 0x1A] (A block register) Status 2 B Register (R) [Sub Address 0x32] (B block register)

Sub Address 0x1A, 0x32

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Reserved	Deserved	AGCSTSA	REALFLDA	WSSDETA	VBIDDETA	EXTDETA	CCDETA
	Reserved	AGCSTSB	REALFLDB	WSSDETB	VBIDDETB	EXTDETB	CCDETB

Status 2 A/B Register Definition

Bit	Register Name		R/W	Definition
bit 0	CCDETA/B	Closed Caption Detect_A/B	R	Indicator for presence of decoded data in Closed Caption 1 2 Register [0]: No closed caption data present [1]: Closed caption Data present
bit 1	EXTDETA/B	Extended Data Detect_A/B	R	Indicator for presence of decoded data in Extended Data 1,2 Register 0]: No extended data present [1]: Extended data present
bit 2	VBIDDETA/B	VBID Data Detect_A/B	R	Indicator for presence of decoded data in VBID 1,2 Register [0]: No VBID data present [1]: VBID data present
bit 3	WSSDETA/B	WSS Data Detect_A/B	R	Indicator for presence of decoded data in WSS 1,2 Register [0]: No WSS data present [1]: WSS data present
bit 4	REALFLDA/B	Real Field_A/B	R	Input signal field status (even/odd) indicator [0] : EVEN field [1] : ODD field
bit 5	AGCSTSA/B	AGC Status_A/B	R	[0] : Sync AGC active [1] : Peak AGC active *
bit 6 ~ bit 7	Reserved	Reserved	R	Reserved

Input Video Status A Register (R) [Sub Address 0x1C] (A block register) Input Video Status B Register (R) [Sub Address 0x34] (B block register)

Sub Address 0x1C, 0x34

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
FIXEDA	UNDEFA	ST_B/WA	ST_VLFA	ST_VCENA1	ST_VCENA0	ST_VSFA1	ST_VSFA0
FIXEDB	UNDEFB	ST_B/WB	ST_VLFB	ST_VCENB1	ST_VCENB0	ST_VSFB1	ST_VSFB0

Input Video Status A/B Register Definition

BIT	Register Name		R/W	Definition
bit 0	ST_VSFA/B 0	Status of Video		Input video signal subcarrier frequency indicator [ST_VSFA/B 1 : ST_VSFA/B 0] (MHz) [00] : 3.57954545 (NTSC-M.J)
~	~	Sub-Carrier	R	[01] : 3.57561149 (PAL-M)
bit 1	ST_VSFA/B 1	Frequency_A/B		[10] : 3.58205625 (PAL-Nc)
				[11] : 4.43361875
				(PAL-B,D,G,H,I,N,60,
				NTSC-4.43, SECAM*)
bit 2 ~ bit 3	ST_VCENA/B 0 ~ ST_VCENA/B 1	Status of Video Color Encode_A/B	R	Input signal color encode format indicator [ST_VCEN1 : ST_VCEN0] [00] : NTSC [01] : PAL
	—			[10] : SECAM
bit 4	ST_VLFA/B	Status of Video Line Frequency_A/B	R	Input signal line number indicator [0] : 525 line (NTSC-M,J , NTSC-4.43 , PAL-M,60) [1] : 625 line (PAL-B,D,G,H,I,N,Nc, SECAM)
bit 5	ST_BWA/B	Status of B/W Signal_A/B	R	Input signal monochrome indicator [0]: Not monochrome [1]: Monochrome
bit 6	UNDEFA/B	Un_define_A/B	R	Input signal detection indicator [0]: Input signal detected [1]: Input signal not detected
bit 7	FIXEDA/B	Input Video Standard fixed_A/B	R	Input signal detection process status [0]: Detection process in progress [1]: Detection process completed

*If SECAM input signal is detected, ST_VSCF[1:0] goes to [11].

Asahi**KASEI**

Closed Caption 1 A Register (R) [Sub Address 0x1D] (A block register) Closed Caption 1 B Register (R) [Sub Address 0x35] (B block register)

Closed Caption data storage register

Sub Address 0x1D, 0x35

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
CCA7	CCA6	CCA5	CCA4	CCA3	CCA2	CCA1	CCA0
CCB7	CCB6	CCB5	CCB4	CCB3	CCB2	CCB1	CCB0

Closed Caption 2 A Register (R) [Sub Address 0x1E] (A block register) Closed Caption 2 B Register (R) [Sub Address 0x36] (B block register)

Closed Caption data storage register

Sub Address 0x1E, 0x36

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
CCA15	CCA14	CCA13	CCA12	CCA11	CCA10	CCA	CCA8
CCB15	CCB14	CCB13	CCB12	CCB11	CCB10	ССВ	CCB8

WSS 1 A Register (R) [Sub Address 0x1F] (A block register) WSS 1 B Register (R) [Sub Address 0x37] (B block register)

WSS data storage register

Sub Address 0x1F, 0x37

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
GA2-7	GA2-6	GA2-5	GA2-4	GA1-3	GA1-2	GA1-1	GA1-0
GB2-7	GB2-6	GB2-5	GB2-4	GB1-3	GB1-2	GB1-1	GB1-0

WSS 2 A Register (R) [Sub Address 0x20] (A block register) WSS 2 B Register (R) [Sub Address 0x38] (B block register)

WSS data storage register

Sub Address 0x20, 0x38

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Reserved	Reserved	GA4-13	GA4-12	GA4-11	GA3-10	GA3-9	GA3-8
		GB4-13	GB4-12	GB4-11	GB3-10	GB3-9	GB3-8

Extended Data 1 A Register (R) [Sub Address 0x21] (A block register) Extended Data 1 B Register (R) [Sub Address 0x39] (B block register)

Closed Caption Extended data storage register

Sub Address 0x21, 0x39								
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
EXTA7	EXTA6	EXTA5	EXTA4	EXTA3	EXTA2	EXTA1	EXTA0	
EXTB7	EXTB6	EXTB5	EXTB4	EXTB3	EXTB2	EXTB1	EXTB0	

Extended Data 2 A Register (R) [Sub Address 0x22] (A block register) Extended Data 2 B Register (R) [Sub Address 0x3A] (B block register)

Closed Caption Extended data storage register

Sub Address 0x22, 0x3A

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
EXTA15	EXTA14	EXTA13	EXTA12	EXTA11	EXTA10	EXTA9	EXTA8
EXTB15	EXTB14	EXTB13	EXTB12	EXTB11	EXTB10	EXTB9	EXTB8

VBID 1 A Register (R) [Sub Address 0x23] (A block register) VBID 1 B Register (R) [Sub Address 0x3B] (B block register)

VBID data storage register

Sub Address 0x23, 0x3B

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Reserved	Reserved	VBIDA1	VBIDA2	VBIDA3	VBIDA4	VBIDA5	VBIDA6
		VBIDB1	VBIDB2	VBIDB3	VBIDB4	VBIDB5	VBIDB6

VBID 2 A Register (R) [Sub Address 0x24] (A block register) VBID 2 B Register (R) [Sub Address 0x3C] (B block register)

VBID data storage register

Sub Address 0x24, 0x3C

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
VBIDA7	VBIDA8	VBIDA9	VBIDA10	VBIDA11	VBIDA12	VBIDA13	VBIDA14
VBIDB7	VBIDB8	VBIDB9	VBIDB10	VBIDB11	VBIDB12	VBIDB13	VBIDB14

Asahi**KASEI**

Device and Revision ID Register (R) [Sub Address 0x3D]

Device ID and Revision indicator

Device ID: [0x39]

Revision ID: Initially 0x00; revision number changes only when control software should be modified.

Sub Address 0x3D

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
REV1	REV0	DID5	DID4	DID3	DID2	DID1	DID0	
Default Value								
0	0	1	1	1	0	0	1	

Device and Revision ID Register Definition

Bit	Register Name		R/W	Definition
bit 0	DID0			
~	~	Device ID	R	Device ID indicator (0x39)
bit 5	DID5			
bit 6	REV0			
~	~	Revision ID	R	Revision ID indicator (initially 0x00)
bit 7	REV1			

10. System connection example

11. Package

12. Marking

AKM: AK8857VQ: XXXXXXX (7 digits): Date Code

AKM Logo Marketing Code

IMPORTANT NOTICE

- These products and their specifications are subject to change without notice. Before considering any use or application, consult the Asahi Kasei Microsystems Co., Ltd. (AKM) sales office or authorized distributor concerning their current status.
- AKM assumes no liability for infringement of any patent, intellectual property, or other right in the application or use of any information contained herein.
- Any export of these products, or devices or systems containing them, may require an export license or other official approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange, or strategic materials.
- AKM products are neither intended nor authorized for use as critical components in any safety, life support, or other hazard related device or system, and AKM assumes no responsibility relating to any such use, except with the express written consent of the Representative Director of AKM. As used here:
 - (a) A hazard related device or system is one designed or intended for life support or maintenance of safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform may reasonably be expected to result in loss of life or in significant injury or damage to person or property.
 - (b) A critical component is one whose failure to function or perform may reasonably be expected to result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which must therefore meet very high standards of performance and reliability.
- It is the responsibility of the buyer or distributor of an AKM product who distributes, disposes of, or otherwise places the product with a third party to notify that party in advance of the above content and conditions, and the buyer or distributor agrees to assume any and all responsibility and liability for and hold AKM harmless from any and all claims arising from the use of said product in the absence of such notification.