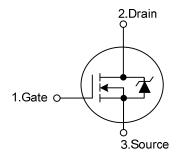


# **UTC** UNISONIC TECHNOLOGIES CO., LTD

## **UF740**

# 10A, 400V, 0.55Ω N-CHANNEL **POWER MOSFET**


## DESCRIPTION

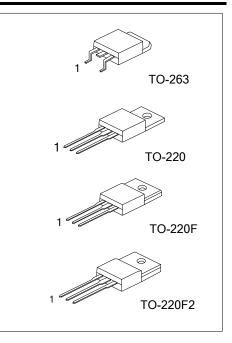
The N-Channel enhancement mode silicon gate power MOSFET is designed for high voltage, high speed power switching applications such as switching regulators, switching converters, solenoid, motor drivers, relay drivers.

#### **FEATURES**

- \* 10A, 400V, R<sub>DS(ON)</sub>(0.55Ω)
- \* Single Pulse Avalanche Energy Rated
- \* Rugged SOA is Power Dissipation Limited
- \* Fast Switching Speeds
- \* Linear Transfer Characteristics
- \* High Input Impedance

#### **SYMBOL**




## **ORDERING INFORMATION**

| Ordering Number |              | Deekere  | Pin Assignment |   |   | Decking   |  |
|-----------------|--------------|----------|----------------|---|---|-----------|--|
| Lead Free       | Halogen Free | Package  | 1              | 2 | 3 | Packing   |  |
| UF740L-TA3-T    | UF740G-TA3-T | TO-220   | G              | D | S | Tube      |  |
| UF740L-TF2-T    | UF740G-TF2-T | TO-220F2 | G              | D | S | Tube      |  |
| UF740L-TF3-T    | UF740G-TF3-T | TO-220F  | G              | D | S | Tube      |  |
| UF740L-TQ2-T    | UF740G-TQ2-T | TO-263   | G              | D | S | Tube      |  |
| UF740L-TQ2-R    | UF740G-TQ2-R | TO-263   | G              | D | S | Tape Reel |  |

Note: Pin Assignment: G: Gate D: Drain S: Source

| UF740Ļ- <u>TA3</u> -Ţ |                 | (1) R: Tape Reel, T: Tube         |
|-----------------------|-----------------|-----------------------------------|
|                       | (1)Packing Type | (2) TA3: TO-220, TF2: TO-220F2,   |
|                       | (2)Package Type | TF3: TO-220F, TQ2: TO-263         |
|                       | (3)Lead Free    | (3) G: Halogen Free, L: Lead Free |

## **Power MOSFET**



| PARAMETER                                                              |                                                     | SYMBOL                  | RATINGS             | UNIT |
|------------------------------------------------------------------------|-----------------------------------------------------|-------------------------|---------------------|------|
| rain to Source Voltage (T <sub>J</sub> =25°C~125°C)                    |                                                     | V <sub>DS</sub>         | 400                 | V    |
| Drain to Gate Voltage ( $R_{GS}$ = 20k $\Omega$ ) ( $T_J$ =25°C~125°C) |                                                     | V <sub>DGR</sub>        | 400                 | V    |
| Gate to Source Voltage                                                 |                                                     | V <sub>GS</sub>         | V <sub>GS</sub> ±20 |      |
| ~                                                                      | Continuous                                          | ID                      | 10                  | А    |
| Drain Current                                                          | T <sub>C</sub> = 100°C                              | ID                      | 6.3                 | А    |
|                                                                        | Pulsed                                              | Ised I <sub>DM</sub> 40 |                     | А    |
| Power Dissipation                                                      | TO-220/TO-263                                       |                         | 125                 |      |
|                                                                        | TO-220F                                             |                         | 44                  | W    |
|                                                                        | TO-220F2                                            |                         | 46                  |      |
| Derating above 25°C                                                    | TO-220/TO-263                                       | PD                      | 1.0                 |      |
|                                                                        | TO-220F                                             |                         | 0.35                | W/°C |
|                                                                        | TO-220F2                                            |                         | 0.37                |      |
| Single Pulse Avalanche Energ                                           | ngle Pulse Avalanche Energy Rating(Note3)           |                         | 520                 | mJ   |
| Junction Temperature                                                   | Avalanche Energy Rating(Note3)EAS520nperatureTJ+150 |                         | °C                  |      |
| Operating Temperature                                                  | perating Temperature                                |                         | -55 ~ +150          | °C   |
| Storage Temperature                                                    |                                                     | T <sub>STG</sub>        | -55 ~ +150          | °C   |

## ■ **ABSOLUTE MAXIMUM RATINGS** (T<sub>c</sub> = 25°C, Unless Otherwise Specified)

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

## THERMAL DATA

| PARAMETER           |               | SYMBOL          | RATINGS | UNIT |
|---------------------|---------------|-----------------|---------|------|
| Junction to Ambient |               | θ <sub>JA</sub> | 62.5    | °C/W |
| Junction to Case    | TO-220/TO-263 |                 | 1.0     |      |
|                     | TO-220F       | θ <sub>Jc</sub> | 2.86    | °C/W |
|                     | TO-220F2      |                 | 2.72    |      |

#### ■ ELECTRICAL CHARACTERISTICS (T<sub>c</sub> =25°C, Unless Otherwise Specified.)

| PARAMETER                         | SYMBOL                | TEST CONDITIONS                                                                            | MIN | TYP  | MAX   |          |
|-----------------------------------|-----------------------|--------------------------------------------------------------------------------------------|-----|------|-------|----------|
|                                   |                       |                                                                                            |     | ITF  | IVIAA | <u> </u> |
| Drain to Source Breakdown Voltage | BV <sub>DSS</sub>     | V <sub>GS</sub> = 0V, I <sub>D</sub> = 250µA                                               | 400 |      |       | V        |
| Gate to Threshold Voltage         | V <sub>GS(THR)</sub>  | $V_{GS} = V_{DS}, I_D = 250 \mu A$                                                         | 2.0 |      | 4.0   | V        |
| On-State Drain Current (Note 1)   | I <sub>D(ON)</sub>    | V <sub>DS</sub> >I <sub>D(ON)</sub> x R <sub>DS(ON)MAX</sub> , V <sub>GS</sub> =10V        | 10  |      |       | Α        |
| Zero Gate Voltage Drain Current   | 1                     | $V_{DS}$ = Rated BV <sub>DSS</sub> , $V_{GS}$ = 0V                                         |     |      | 25    | μA       |
|                                   | I <sub>DSS</sub>      | V <sub>DS</sub> =0.8 x Rated BV <sub>DSS</sub> , V <sub>GS</sub> =0V,T <sub>J</sub> =125°C |     |      | 250   | μA       |
| Gate to Source Leakage Current    | I <sub>GSS</sub>      | $V_{GS} = \pm 20V$                                                                         |     |      | ±500  | nA       |
| Drain to Source On Resistance     | R <sub>DS(ON)</sub>   | V <sub>GS</sub> = 10V, I <sub>D</sub> = 5.2A (Note 1)                                      |     | 0.47 | 0.55  | Ω        |
| Forward Transconductance          | <b>g</b> fs           | V <sub>DS</sub> ≥ 50V, I <sub>D</sub> = 5.2A (Note 1)                                      | 5.8 | 8.9  |       | S        |
| Turn-On Delay Time                | t <sub>DLY(ON)</sub>  | V <sub>DD</sub> = 200V, I <sub>D</sub> ≈ 10A,                                              |     | 15   | 21    | ns       |
| Rise Time                         | t <sub>R</sub>        | R <sub>GS</sub> = 9.1Ω, R <sub>L</sub> = 20Ω, V <sub>GS</sub> = 10V                        |     | 25   | 41    | ns       |
| Turn-Off Delay Time               | t <sub>DLY(OFF)</sub> | MOSFET Switching Times are Essentially                                                     |     | 52   | 75    | ns       |
| Fall Time                         | t⊢                    | Independent of Operating Temperature                                                       |     | 25   | 36    | ns       |
| Total Gate Charge                 |                       | $V_{GS}$ = 10V, $I_{D}$ = 10A, $I_{G(REF)}$ = 1.5mA,                                       |     | 41   | 63    | nC       |
| (Gate to Source + Gate to Drain)  | Q <sub>G(TOT)</sub>   | V <sub>DS</sub> = 0.8 x Rated BV <sub>DSS</sub>                                            |     |      | 05    |          |
| Gate to Source Charge             | Q <sub>GS</sub>       | Gate Charge is Essentially Independent of                                                  |     | 6.5  |       | nC       |
| Gate to Drain "Miller" Charge     | Q <sub>GD</sub>       | Operating Temperature                                                                      |     | 23   |       | nC       |
| Input Capacitance                 | CISS                  |                                                                                            |     | 1250 |       | рF       |
| Output Capacitance                | C <sub>OSS</sub>      | V <sub>GS</sub> = 0V, V <sub>DS</sub> =25V, f = 1.0MHz                                     |     | 300  |       | рF       |
| Reverse - Transfer Capacitance    | C <sub>RSS</sub>      |                                                                                            |     | 80   |       | рF       |



nΗ

nH

nH

V

А

А

ns

μC

1.6

4.5

8.2

#### MAX UNIT SYMBOL **TEST CONDITIONS** MIN TYP PARAMETER Measured From the Modified MOSFET Contact Screw on Symbol Showing the 3.5 Tab to Center of Internal Devices Die Inductances Internal Drain Inductance Measured From the $L_D$ οD Drain Lead, 6mm (0.25in) From 4.5 LD Package to Center of Die 7 Go Measured From the Source Lead, 6mm 7.5 Internal Source Inductance (0.25in) From Ls ტ S Header to Source Bonding Pad SOURCE TO DRAIN DIODE SPECIFICATIONS Source to Drain Diode Voltage $V_{SD}$ T<sub>J</sub> = 25°C, I<sub>SD</sub> = 10A, V<sub>GS</sub> = 0V (Note 1) 2.0 Modified MOSFET γD Continuous Source to Drain ls 10 Current Symbol Showing the Integral Reverse 7 P-N Junction Diode Pulse Source to Drain Current GO 40 ISM (Note 2) Reverse Recovery Time $T_J = 25^{\circ}C$ , $I_{SD} = 10A$ , $dI_{SD}/dt = 100A/\mu s$ 170 390 790 trr

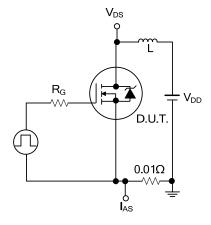
 $T_J = 25^{\circ}C$ ,  $I_{SD} = 10A$ ,  $dI_{SD}/dt = 100A/\mu s$ 

#### **ELECTRICAL CHARACTERISTICS(Cont.)**

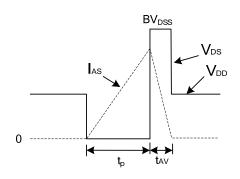
Notes:

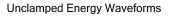
Reverse Recovery Charge

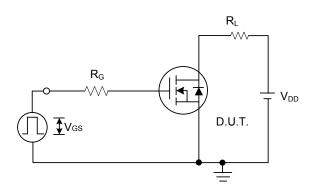
1. Pulse Test: Pulse width  $\leq$  300µs, Duty Cycle $\leq$ 2%.


2. Repetitive rating: Pulse width limited by maximum junction temperature.

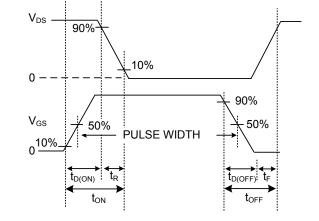
Q<sub>RR</sub>


3. (V<sub>DD</sub>=50V, starting  $T_J$ =25°C, L=9.1mH, R<sub>G</sub>=25 $\Omega$ , peak I<sub>AS</sub> = 10A)

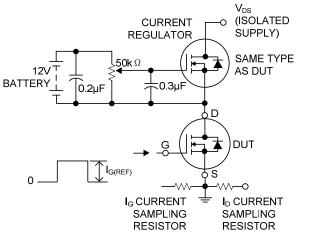




### TEST CIRCUITS AND WAVEFORMS




Unclamped Energy Test Circuit








Switching Time Test Circuit

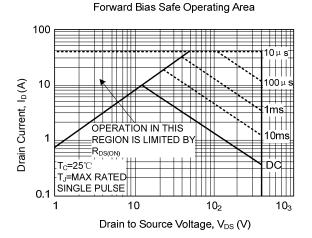


**Resistive Switching Waveforms** 

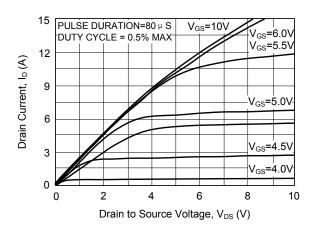


Gate Charge Test Circuit

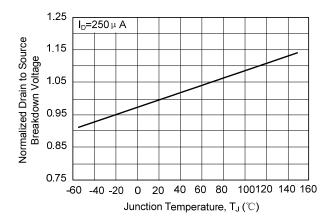
V<sub>DD</sub> Q<sub>G</sub>(TOT) V<sub>GS</sub> V<sub>DS</sub> I<sub>Q(REF)</sub>


0

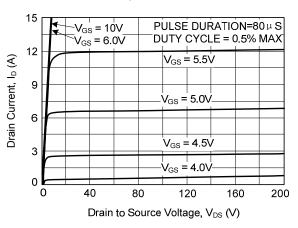
0


Gate Charge Waveforms

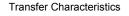



#### TYPICAL PERFORMANCE CUVES (Unless Otherwise Specified)



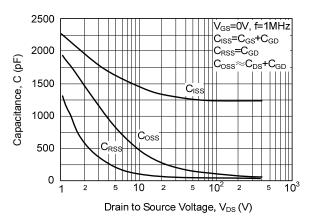

#### Saturation Characteristics



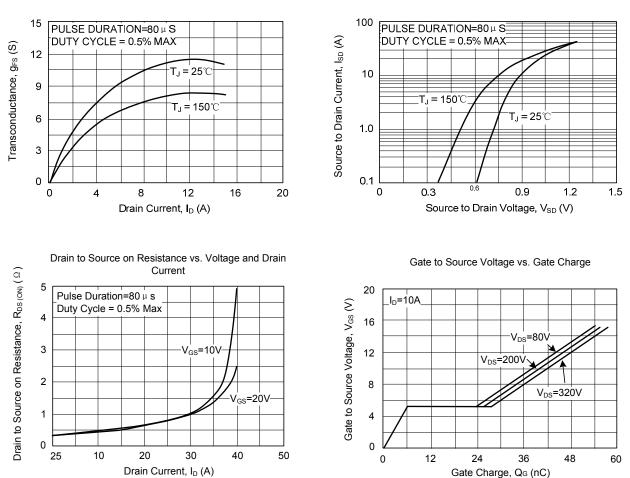

Normalized Drain to Source Breakdown Voltage vs. Junction Temperature








Output Characteristics






#### Capacitance vs. Drain to Source Voltage



## **TYPICAL PERFORMANCE CUVES (Cont.)**



Transconduce vs. Drain Current

Source to Drain Diode Voltage

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

