UNISONIC TECHNOLOGIES CO., LTD

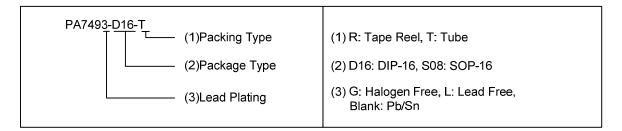
PA7493 cmos ic

2W X 2 CLASS AB AUDIO POWER AMPLIFIER (WITH DC_VOLUME CONTROL)

■ DESCRIPTION

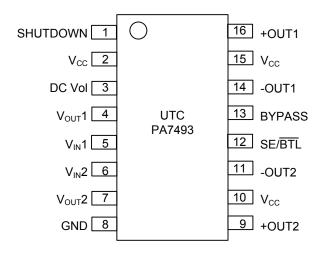
UTC **PA7493** provides precise DC volume control, and a stereo bridged audio power amplifiers capable of producing 2W into 4Ω as a monolithic integrated circuit. In stand-by the power consumption is very low. UTC **PA7493** combines a stereo single-end (SE) mode for headphone drive into a single chip and a stereo bridge-tied loads (BTL) mode for speaker drive(both modes are easily switched by the SE/BTL input control signal) to simplify the audio system design. Package size is not occupies PCB space cause the built-in over-temperature protection. It is suitable for small or portable products.

DIP-16 SOP-16


Lead-free: PA7493L Halogen-free: PA7493G

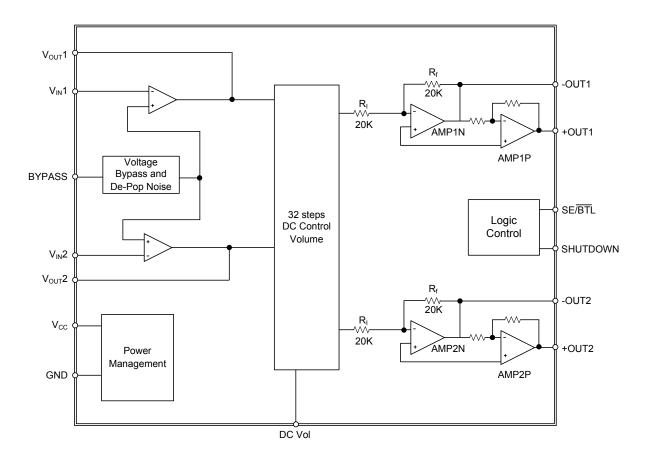
■ FEATURES

- * Stereo switch able bridged/single-ended power amplifiers
- * Output power 2W × 2 (V_{CC} =6V, THD=1%, R_L =4 Ω)
- * Low harmonics distortion
- * Include 32 steps volume controller by DC voltage with ysteresis
- * "Click and pop" suppression circuitry
- * Low current consumption in SHUTDOWN Mode(0.7µA)
- * Thermal shutdown


■ ORDERING INFORMATION

	Destar	Packing		
Normal	- Package			
PA7493-D16-T	PA7493L-D16-T	PA7493G-D16-T	DIP-16	Tube
PA7493-S16-R	PA7493L-S16-R	PA7493G-S16-R	SOP-16	Tube
PA7493-S16-T	PA7493L-S16-T	PA7493G-S16-T	SOP-16	Tape Reel

www.unisonic.com.tw


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO	PIN NAME	I/O	DESCRIPTION
1	SHUTDOWN	I	When this pin connected to the V _{CC} entire IC into the shutdown mode
2	V_{CC}		Supply voltage input pin
3	DC Vol	I	DC Volume control input
4	V _{OUT} 1	I	Output of Channel 1 for external feedback circuit
5	V _{IN} 1	I	Input of Channel 1 audio
6	V _{IN} 2	I	Input of Channel 2 audio
7	V _{OUT} 2	I	Output of Channel 2 for external feedback circuit
8	GND		Ground
9	+OUT2	0	Output (+) of Channel 2
10	V_{CC}		Supply voltage input
11	-OUT2	0	Output (-) of Channel 2
12	SE/BTL	I	Output mode select, which is connected to the V_{CC} for SE mode or GND for BTL mode
13	BYPASS	0	Internal bias reference bypassing
14	-OUT1	0	Output (-) of Channel 1
15	V_{CC}		Supply voltage input
16	+OUT1	0	Output (+) of Channel 1

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V_{CC}	0~7	V
Input Voltage	V_{IN}	-0.3~V _{CC} +0.3	V
Input Current	I _{IN}	-10~+10	mA
Operating Temperature	T _{OPR}	-40~+85	$^{\circ}\!\mathbb{C}$
Storage Temperature	T _{STG}	-65~+150	$^{\circ}\!\mathbb{C}$

Note: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ ELECTRICAL CHARACTERISTICS

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	PARAMETER		SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Couliescent Power Supply Current IcC SE MODE BTL MODE 8 10 14 14 14 14 15 14 15 14 15 14 15 14 14	FOR ENTIRE IC (V _{CC}	=5V, T _A =25°€,	unless othe	erwise specified.)					
Columber Columber	Supply Voltage					3	5	6	V
Shutdown Current	O.:			SE MODE		6	8	12	m A
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Quiescent Fower Sup	pply Current	ICC	BTL MODE		8	10	14	IIIA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Shutdown Current		I _{SD}	SHUTDOWN=C	N	0.2	0.7	1	μA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		llimb I aval	\/	SHUTDOWN		0.5	0.6		Vcc
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Through old \/altaga	High Level	VIH	SE/BTL		0.8	0.9		Vcc
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Threshold voltage	l avvil aval	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	SHUTDOWN			0.2	0.3	Vcc
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Low Level	VIL	SE/BTL			0.1	0.2	Vcc
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	FOR VOLUME ATTE	NUATORS (V	_{CC} =5V, T _A =2	.5℃, unless other	wise specified.)				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Two Channels Gain E	rror	Gerr	$R_{IN}=R_F=20K\Omega$		-1	0	+1	dB
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Values Cartes Dans		.,,	DC Vol=5V,F=1	KHz	-1	0	+1	-10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Volume Control Rang	е	VCTRL	DC Vol =16.875	% V _{CC}	-46	-47	-48	aB
SE -78 dB FOR SINGLE-ENDED MODE OPERATION (V_{CC} =5V, bandwidth = 22~22 KHz, Unless otherwise specified.) Maximum Output Power P_{OUT} R_L =32Ω THD=1.0% 80 85 90 mW Total Harmonic Distortion Plus Noise THD+N P_{OUT} =50mW, R_L =32Ω 0.03 0.05 0.07 % Power Ripple Rejection Ratio PSRR V_{RIPPLE} =200mVrms, C_B =1μF, Fin=120Hz 58 dB Signal to Noise Ratio SNR P_{OUT} =75mW, R_L =32Ω, P_{OUT} =75mV, R_L =32Ω, P_{OUT} =75mV, R_L =4Ω, P_{OUT} =75mV, P	BA to Attend Co.			., 5.,	BTL	-78			dB
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mute Attenuation		Ам	V _{MUTE} =5V	SE	-78			dB
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	FOR SINGLE-ENDER								
Total Harmonic Distortion Plus Noise									mW
Total Harmonic Distortion Plus Noise THD+N $P_{OUT} = 50 \text{mW}$, $R_L = 32\Omega$ 0.03 0.05 0.07 % Power Ripple Rejection Ratio PSRR $V_{RIPPLE} = 200 \text{mV/rms}$, $C_B = 1 \mu F$, Fin=120Hz 58 dB Signal to Noise Ratio SNR $P_{OUT} = 75 \text{mW}$, $R_L = 32\Omega$, A-weight 102 dB Channel Separation Xtalk $C_B = 1 \mu F$, Fin=1kHz 77 80 83 dB FOR BRIDGED MODE OPERATION (V _{CC} = 5V, bandwidth = 22~22 KHz, Unless otherwise specified.) Output Offset Voltage $V_{O(OFF)}$ $V_{IN} = 0V$, No Load -50 5 50 mV Maximum Output Power POUT THD+N=1%, $R_L = 4\Omega$ 1.4 1.6 1.8 THD+N=10%, $R_L = 4\Omega$ 1.0 1.1 1.2 THD+N=10%, $R_L = 8\Omega$ 1.0 1.1 1.2 THD+N=10%, $R_L = 8\Omega$ 1.2 1.4 1.6 1.6 1.8 THD+N=10%, $R_L = 8\Omega$ 1.0 1.1 1.2 1.2 1.4 1.6 1.2 1.4 1.6 1.2 1.4 1.6 1.8 1.2 1.4 1.6 1.2			Pout	$R_L = 32\Omega$		100	110	120	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			THD+N	P_{OUT} =50mW, R_L =32 Ω		0.03	0.05	0.07	%
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Power Ripple Rejection Ratio		PSRR				58		dB
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Signal to Noise Ratio		SNR	P_{OUT} =75mW, R_L =32 Ω ,			102		dB
	Channel Separation		Xtalk			77	80	83	dB
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		E OPERATIO							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1						mV
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	output officer voltage		5(5)				1.6	1.8	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Maximum Output Pov	ver	Pout						W
	Maximum Galpat Fewer					1.0		1.2	
Total Harmonic Distortion Plus Noise $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
Noise $P_{OUT} = 1W, R_L = 4\Omega$ 0.06 0.08 0.15	Total Harmonic Distortion Plus		T. 15	•					61
V ₂₁₂₂₁ = 200m\/rms			THD+N			0.06			%
$C_B = 1 \mu F$, Fin=120Hz	Power Ripple Rejection Ratio		PSRR	V_{RIPPLE} =200m V rms , R_L =8 Ω ,			74		dB
	Signal to Noise Ratio		SNR				93		dB
	<u> </u>			C _B =1µF, Fin=1kHz		85		91	

^{2.} Input pins surge current can be reached 100mA will not induce the CMOS latched up.

■ FUNCTION DESCRIPTION

POWER SUPPLY

The UTC **PA7493** operating voltage range is from 3V to 6V. In general, the 5V operating voltage is recommended. When the supply voltage less than 3V, the IC can work properly but the distortion will rise. The higher stand-by current consumption will rise the chip surface temperature after the operating voltage over 6.5V.

SHUTDOWN

After powering on the UTC **PA7493**, connects the SHUTDOWN pin to V_{CC} will force the chip into shutdown mode. At the shutdown mode, the total current consumption is less than $0.7\mu A$, and all of the input/output pins no voltage output. The chip is back to the normal operation when the SHUTDOWN pin sets to GND.

SHUTDOWN PIN	OUTPUT STATE				
V_{CC}	SHUTDOWN ON				
GND	Normal				

INPUT GAIN ADJUST

The output gain of the UTC **PA7493** can be adjusted by the external resistor. 0dB gain setting is recommended in normal operation, please refer the application circuit. If the source output level is not so high (ex :< $2V_{PP}$), input gain can be increased to get the proper volume. The minimum value of the input series resistance is $10K\Omega$ for the modest input impedance.

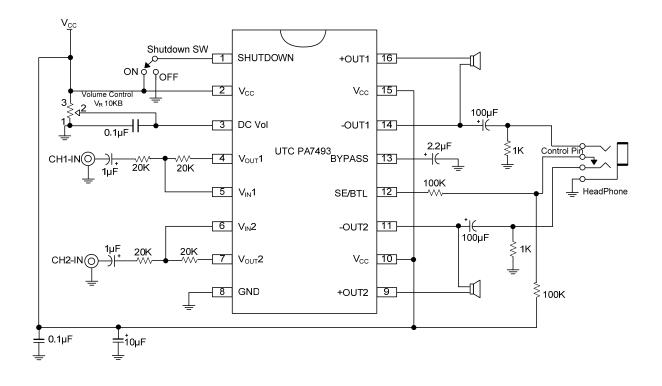
To make sure the input stage not distorted by overload, please confirm the input signal level. For the gain set please refer the following table:

Operating Voltage	Input Gani=-6db	Input Gain=0db	Input Gani=+6db
V _{CC} =3V	V_{IN} < $5V_{PP}$	V _{IN} <2.5V _{PP}	V _{IN} <1.25V _{PP}
V _{CC} =5V	V_{IN} <8 V_{PP}	V _{IN} <4V _{PP}	V_{IN} <2 V_{PP}

SE/BTL MODE SWITCHING

The UTC PA7493 has two output modes, SE(Single-Ended) or BTL(Bridge-Tied Load). To drive a speaker load, set to the BTL mode is recommended for getting the more power output. Driving a headphone load, we suggest setting to SE mode and turn-off the un-work amplifier to decrease the stand-by power consumption. Switching between the SE and BTL modes is controlled by the SE/BTL pin, please refer the following table:

SE/BTL	MODE			
V _{CC}	SE			
GND	BTL			


CLICK AND POP SURPPRESS

A power amplifier uses single supply voltage may cause noises on the output port during the power-on period. It is because of the output DC potential level needs time to stable on 1/2Vcc, the period is relative with the capacitor on the BYPASS pin. The higher capacitor value will extend the stable time and also suppress the noise during the power-on period. At the supply voltage is 5V and the capacitor is 2.2µF, the stable time is around 300ms. The value of the BYPASS capacitor also relatives with the DC blocking capacitor connected at the input terminal. In general condition the time constant of DC blocking capacitor should be less than the CB stable time. Recommend parts values please refer the application circuit.

■ VOLUME CONTROL TABLE

Gain (dB)	Voltage Range (% of V _{CC})			Voltage Range (V _{CC} = 5)			Voltage Range (V _{CC} = 3)			
	Low	High	Recommended	Low	High	Recommended	Low	High	Recommended	
0	77.5%	100.00%	100.000%	3.875	5.000	5.000	2.325	3.000	3.000	
-1	75.0%	78.5%	76.875%	3.750	3.938	3.844	2.250	2.363	2.306	
-2	72.5%	76.25%	74.375%	3.625	3.813	3.719	2.175	2.288	2.231	
-3	70.0%	73.75%	71.875%	3.500	3.688	3.594	2.100	2.213	2.156	
-4	67.5%	71.25%	69.375%	3.375	3.563	3.469	2.025	2.138	2.081	
-5	65.0%	68.75%	66.875%	3.250	3.438	3.344	1.950	2.063	2.006	
-6	62.5%	66.25%	64.375%	3.125	3.313	3.219	1.875	1.988	1.931	
-8	60.0%	63.75%	61.875%	3.000	3.188	3.094	1.800	1.913	1.856	
-10	57.5%	61.25%	59.375%	2.875	3.063	2.939	1.725	1.838	1.781	
-12	55.0%	58.75%	56.875%	2.750	2.938	2.844	1.650	1.763	1.706	
-14	52.5%	56.25%	54.375%	2.625	2.813	2.719	1.575	1.688	1.631	
-16	50.0%	53.75%	51.875%	2.500	2.688	2.594	1.500	1.613	1.556	
-18	47.5%	51.25%	49.375%	2.375	2.563	2.469	1.425	1.538	1.481	
-20	45.0%	48.75%	46.875%	2.250	2.438	2.344	1.350	1.463	1.406	
-22	42.5%	46.25%	44.375%	2.125	2.313	2.219	1.275	1.388	1.331	
-24	40.0%	43.75%	41875%	2.000	2.188	2.094	1.200	1.313	1.256	
-26	37.5%	41.25%	39.375%	1.875	2.063	1.939	1.125	1.238	1.181	
-28	35.0%	38.75%	36.875%	1.750	1.938	1.844	1.050	1.163	1.106	
-30	32.5%	36.25%	34.375%	1.625	1.813	1.719	0.975	1.088	1.031	
-32	30.0%	33.75%	31.875%	1.500	1.688	1.594	0.900	1.013	0.956	
-34	27.5%	31.25%	29.375%	1.375	1.563	1.469	0.825	0.937	0.881	
-36	25.0%	28.75%	26.875%	1.250	1.438	1.344	0.750	0.862	0.806	
-39	22.5%	26.25%	24.375%	1.125	1.313	1.219	0.675	0.787	0.731	
-42	20.0%	23.75%	21.875%	1.000	1.188	1.094	0.600	0.712	0.656	
-45	17.5%	21.25%	19.375%	0.875	1.063	0.939	0.525	0.637	0.581	
-47	15.0%	18.75%	16.875%	0.750	0.937	0.844	0.450	0.562	0.506	
-51	12.5%	16.25%	14.375%	0.625	0.812	0.719	0.375	0.487	0.431	
-56	10.0%	13.75%	11.875%	0.500	0.687	0.594	0.300	0.412	0.356	
-61	7.5%	11.25%	9.375%	0.375	0.562	0.469	0.225	0.337	0.281	
-66	5.0%	8.75%	6.875%	0.250	0.437	0.344	0.150	0.262	0.206	
-78	0.0%	6.25%	0.000%	0.000	0.312	0.000	0.000	0.187	0.000	

■ TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.