microelectronics group

RM0850HA-100 Front-End Power Supply: 170 Vac to 264 Vac Input; 54.2 Vdc Output; 850 W

Applications

- Advanced workstations
- Midrange computers
- Mainframes
- File servers
- LAN/WAN applications
- Mass storage
- Telecommunications equipment

Features

- Power-factor correction (meets IEC1000-3-2 requirements)
- Overvoltage and overcurrent protection
- Overtemperature protection
- UL* Recognized (UL1950); CSA[†] Certified (CSA22.2-234/950), VDE Certified (EN60950)
- CE mark meets 73/23/EEC and 93/68/EEC directives[‡]
- Redundant parallel operation
- Remote on/off
- Active load sharing
- Remote sense
- Hot insertion/removal (hot plug)
- Power fail warning
- Fault alarm
- Output current monitor
- Overtemperature warning
- External voltage margining
- Additional alarm and control
- Front panel LED indicators

Description

The RM0850-Series front-end power supplies are specifically designed to operate as an integral part of a complete distributed power system, with or without battery backup. A full complement of alarm and shutdown features have been incorporated into the power supply to protect the system in the event of a fault condition. The flexible feature set makes this front-end power supply an excellent choice for applications requiring modular ac-to-dc bulk intermediate voltages, such as distributed power and dc UPS.

^{*} UL is a registered trademark of Underwriters Laboratories, Inc.

[†] CSA is a registered trademark of Canadian Standards Association.

[‡] This product is intended for integration into end-use equipment. The required procedures for CE marking of end-use equipment should be followed. (The CE mark is placed on selected products.)

Electrical Specifications

Input Specifications

Table 1. Input Specifications

Parameter	Min	Тур	Max	Unit	Note
Input Voltage	170		264	Vac	Unit will shut down if line volt-
					age drops beyond the range.
Input Frequency	47	—	63	Hz	_
Inrush Current (peak)	_	—	50	А	Inrush of FEU at 264 Vac.
Power Factor	0.90	0.99*	—	_	\geq 50% of full load.
Input Leakage Current	_		0.72	mA	255 Vac, 60 Hz.
Lightning Surge and Transients	—	—	—	—	1) IEC1000-4-5 Level 4.
(damage-free operation)					2) IEC1000-4-4 Level 3.
Hold Over Time	20	—	—	ms	_
EMC (conducted)			—	_	CISPR22 Class A, EN55022
					Class A, with 6 dB margin.

* At full load.

Line Harmonics

Active power-factor correction circuitry ensures that this power supply meets the requirements of IEC1000-3-2 with up to five power supplies connected in parallel and operating at full load.

Efficiency and Power Factor vs. Input Voltage at Full Load

Table 2. Efficiency and Power Factor vs. Input Voltage at Full Load

Input Voltage	Efficiency (typical)	Power Factor (typical)
170 Vac	83%	0.99
190 Vac	86%	0.98
220 Vac	86%	0.98
240 Vac	87%	0.98
264 Vac	87%	0.98

Notes: When using this table to calculate line cord requirements, allow, at a minimum, an extra 3% for variations between units. Actual measured results will depend upon the harmonic content of the input voltage waveform.

Electrical Specifications (continued)

Output Specifications

Table 3. Output Specifications

Parameter	Min	Тур	Max	Unit	Note
Vo Set Point:					Frame GND strappable to either
RM0850HA100	—	54.2	—	Vdc	output terminal.
Regulation (line, load, tem- perature, and set point)	-2.0		2.0	%	Measured at remote sense.
Remote-sense Drop	—	_	1.0	Vdc	_
Output Voltage Margin					Vmargin 0 to 5 V
Range:					Vmargin = 0, V o = V setpoint
RM0850HA100	43.5		54.5	Vdc	Vmargin = 5, Vo = 43.5
lo (rated):					
RM0850HA100	0		15.6	Adc	850 W maximum.
Ripple and Noise (50 MHz bandwidth)	-	_	300	mVp-p	Under any load condition.
Transmission Noise	—	_	45	dBrnC	
Output Rise Time	50		200	ms	Rise from 10% to 90% of final output level (resistive load).
Overvoltage Protection	58.8	_	59.9	Vdc	Selective latched high-voltage shut- down when ORing diode present. Reset by cycling ac input, pressing RESET, or reinsertion.
Output Current Limit (steady state)	_		24.0	Adc	See Figure 1 for details.
Transient Response	45.0	—	59.9	Vdc	25% step at 25% to 75% static.
Active Current Sharing					Single-wire current sharing at full
Differential	—		1.5	A	load.
Efficiency	_	87		%	At full load, 264 Vac, with ORing diode.
Turn On Delay	_	3	4	S	Measured from application of valid ac voltage.
Current Monitor	—	1	-	mA/A	(1 ± 0.02) mA/A ± 1.25 mA.
Low Voltage Alarm	46.5	48	49.5	V	

Electrical Specifications (continued)

8-1283 (C).f

Figure 1. RM0850-Series Output Voltage and Current (Steady State)

The power unit will operate in the constant voltage mode until the load current exceeds $I_{L (min)}$, which is 105% of $I_{O (max)}$. As the load current exceeds $I_{L (min)}$, the power supply begins to operate in the constant power mode. The output voltage will decrease as the output current increases. This mode will continue until the output voltage drops below 43.5 Vdc, when the power supply enters the constant current mode. The output voltage will continue to decrease, but the current will be limited to $I_{constant}$ until the output voltage reaches approximately 12 Vdc. At this level, the power supply operates in the hiccup mode. The maximum short-circuit current that can be drawn from the power supply is $I_{shortcircuit}$.

Environmental Characteristics

Table 4. Environmental Characteristics

Parameter	Min	Тур	Max	Unit	Note
Storage Temperature	-40		85	°C	_
Operating Temperature (air inlet to power unit)	0	_	40	°C	850 W output Airflow front to back with 3" clearance for exhaust air in unpressurized enclosure.
Acoustics		60		dBA	Sound pressure level at 1 m.
Humidity (noncondensing)	5		95	%	
Altitude	-200	_	13,000	feet	Derate at 2 °C/1000 ft. above 8000 ft.
Shock and Vibration					Lucent L-533809.
ESD					IEC1000-4-2 Level 3 stand-alone.
Electromagnetic Immunity (error-free)	_	—	_	—	IEC1000-4-3 Level 2 stand-alone.
Reliability	 1.5 x 10 ⁵	_	7500 —	FITS hours	At 40 °C, 200 Vac, 600 W. Per TR-EOP-000332. MTBF per RIN.

Physical Specifications

Weight is typically 8.0 lbs. See the Outline Diagram for dimensions.

Warranty Information

When used within specified operating conditions, Lucent Technologies Microelectronics Group will warrant that this product will conform to published specifications and are free of material and workmanship defects for the period of three (3) years from date of manufacture. This warranty applies only to units having the date code of warranty period or less when returned to Lucent Technologies for repair. Lucent's liability will be limited to the repair or replacement, at our option, of the returned unit. Our warranty does not extend to any unit which has been subjected to abuse, misuse, or neglect or to units that have been repaired or altered by anyone other than Lucent Technologies or authorized agent.

Physical Descriptions

Definition of Terms

Power-Factor Correction

All RM-Series power supplies comply with the specifications set forth in IEC1000-3-2.

Input Overcurrent Protection

An internal fuse is provided for input protection in compliance with safety agency requirements.

Overcurrent Protection

In the event of an overload condition, the power supply limits the output current. See Figure 1 for details.

Overvoltage Protection

The power unit turns itself off before the output voltage reaches a specified threshold.

Overtemperature Protection

In the event of an overtemperature condition, the power unit protects itself by shutting down. Automatically restarts after cooling down.

ORing Diode

A diode at the output of the power unit protects the dc bus during a power supply failure or hot plugging of the power unit.

Remote On/Off

This is an input signal referenced to the negative output. Shorting this signal to the negative output causes the output of the power unit to turn off.

Current Monitor

This is an analog output current signal proportional to the output current of the unit with a gain of 1.0 mA/A.

Voltage Margining

This is an analog input signal. Adjust the voltage level of this signal to vary the output voltage of the power unit.

Load Share

A single-wire interface between each of the power units forces them to share the load current equally.

Remote Sense

These signals permit the power units to compensate for a voltage drop across the output distribution.

Reset

Toggle this input signal to allow the power unit to recover from a latched shutdown condition.

Redundant Bias Supply

This protected feed from the internal bias supply may be used to source a small amount of 12 V power or externally power the alarm and control logic.

ac Line Discrimination

The unit senses the input line range at powerup and shuts the unit down if the input drops below that line range for a specified period of time.

Front Panel LEDs

Power OK (green): The unit is powered up and operating normally.

Fault (red): The unit has detected an internal fault. *Overtemp.* (yellow): The unit has shut down due to overtemperature condition.

Current Limit (yellow): The unit is overloaded and operating in current limit.

Status Signals

The following are the optically isolated open-collector signals:

Fault: The unit has detected an internal fault. *Overtemp. Warning*: The unit is overheating; shutdown is imminent.

Power Fail Warning: The output of the power unit will fail in 5 ms.

Front-End Power Supply Interfaces

Input Voltages

The product can be used with any standard global line voltages; consult the factory for any particular regional application concerns.

Input Connector

The ac input connection is through an IEC320 type connector system rated 10 A/250 Vac in Europe/Asia and 15 A/120 Vac in North America.

Grounding

Frame ground can be connected so that the output may be floating, have a positive ground, or have a negative ground.

Output Connector

The output connector is a DIN M style, with three power pins and 42 signal pins, DIN 41 612 Type M definition.

Connector Pin Assignment

	A	В	С
31		V +	
28		Frame Ground	
25		V -	
23	Reserved*	Reserved	Reserved
22	No Connection	Reserved	Reserved
21	No Connection	Reserved	Reserved
20	No Connection	Reserved	Reserved
19	No Connection	Bias	No Connection
18	No Connection	Sense +	Sense –
17	No Connection	Current Monitor	No Connection
16	No Connection	Load Share	Voltage Margin +
15	No Connection	Reset	Voltage Margin –
14	No Connection	Remote On/Off	Reserved
13	No Connection	Missing Module +	Missing Module –
12	No Connection	Power Fail Warning +	Power Fail Warning –
11	No Connection	Overtemp. Warning +	Overtemp. Warning –
10	No Connection	Fault +	Fault –
8		No Connection	
5		No Connection	
2		No Connection	

Table 5. Connector Pin Assignment—View into Rear of Power Unit

* Factory test pin; no connection allowed.

Outline Drawing

Dimensions are in inches and (millimeters).

For additional information, contact your Microelectronics Group Account Manager or the following: POWER SYSTEMS UNIT: Microelectronics Group, Lucent Technologies Inc., 3000 Skyline Drive, Mesquite, TX 75149 1800-526-7819 (Outside U.S.A.: 972-284-2626, FAX 972-329-8202) (product-related questions or technical assistance) INTERNET: http://www.lucent.com/micro U.S.A.: Microelectronics Group, Lucent Technologies Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18103 1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106), e-mail docmaster@micro.lucent.com ASIA PACIFIC: Microelectronics Group, Lucent Technologies Singapore Pte. Ltd., 77 Science Park Drive, #03-18 Cintech III, Singapore 118256 Tel. (65) 778 8833, FAX (65) 777 7495 JAPAN: Microelectronics Group, Lucent Technologies Japan Ltd., 7-18, Higashi-Gotanda 2-chome, Shinagawa-ku, Tokyo 141, Japan Tel. (81) 3 5421 1600, FAX (81) 3 5421 1700 For data requests in Europe: MICROELECTRONICS GROUP DATALINE: Tel. (44) 1189 324 299, FAX (44) 1189 328 148 For technical inquiries in Europe: GERMANY: (49) 89 95086 0 (Munich), UNITED KINGDOM: (44) 1344 865 900 (Bracknell), FRANCE: (33) 1 41 45 77 00 (Paris), SWEDEN: (46) 8 600 7070 (Stockholm), FINLAND: (358) 9 4354 2800 (Helsinki), ITALY: (39) 2 6601 1800 (Milan), SPAIN: (34) 1 807 1441 (Madrid) Lucent Technologies Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information.

Copyright © 1997 Lucent Technologies Inc. All Rights Reserved Printed in U.S.A. microelectronics group

June 1997 DS97-131DPA

Lucent Technologies Bell Labs Innovations

