

Linear Systems replaces discontinued Siliconix PN4393

The PN4393 features many of the superior characteristics of JFETs which make it a good choice for demanding analog switching applications and for specialized amplifier circuits.

PN4393 Benefits:

- Low Error Voltage
- High-Speed Analog Circuit Performance
- Negligible "Off-Error," Excellent Accuracy
- Good Frequency Response, Low Glitches
- Eliminates Additional Buffering

PN4393 Applications:

- **Analog Switches**
- Choppers, Sample-and-Hold
- Normally "On" Switches, Current Limiters

FEATURES					
DIRECT REPLACEMENT FOR SILICONIX PN4393					
LOW ON RESISTANCE	$r_{DS(on)} \le 100\Omega$				
LOW GATE OPERATING CURRENT	$I_{D(off)} = 5pA$				
FAST SWITCHING	t _(ON) ≤= 15ns				
ABSOLUTE MAXIMUM RATINGS ¹ @ 25°C (unless otherwise noted)					
Maximum Temperatures					
Storage Temperature	-65°C to +200°C				
Operating Junction Temperature	-55°C to +200°C				
Maximum Power Dissipation					
Continuous Power Dissipation	350mW				
MAXIMUM CURRENT					
Gate Current (Note 1)	I _G = 50mA				
MAXIMUM VOLTAGES					
Gate to Drain Voltage / Gate to Source Voltage	-40V				

PN4393 ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

SYMBOL	CHARACTERISTIC	MIN	TYP.	MAX	UNITS	CONDITIONS
BV _{GSS}	Gate to Source Breakdown Voltage	-40				$I_G = -1\mu A$, $V_{DS} = 0V$
V _{GS(off)}	Gate to Source Cutoff Voltage	-0.5	-	-3	V	$V_{DS} = 20V, I_{D} = 1nA$
$V_{GS(F)}$	Gate to Source Forward Voltage	1	0.7	1		$I_G = 1mA$, $V_{DS} = 0V$
$V_{DS(on)}$	Drain to Source On Voltage	1	0.25	0.4		$V_{GS} = 0V$, $I_D = 3mA$
V _{DS(on)}	Drain to Source On Voltage		0.3			$V_{GS} = 0V$, $I_D = 6mA$
V _{DS(on)}	Drain to Source On Voltage	1	0.35			$V_{GS} = 0V$, $I_D = 12mA$
I _{DSS}	Drain to Source Saturation Current ²	5	1	60	mA	$V_{DS} = 20V, V_{GS} = 0V$
I _{GSS}	Gate Reverse Current	-	-5	-1000		$V_{GS} = -20V, \ V_{DS} = 0V$
l _G	Gate Operating Current	1	-5			$V_{DG} = 15V, I_D = 10mA$
			5	100	pA	$V_{DS} = 20V, V_{GS} = -5V$
I _{D(off)}	Drain Cutoff Current		5	 		$V_{DS} = 20V, V_{GS} = -7V$
			5	1		$V_{DS} = 20V, V_{GS} = -12V$
r _{DS(on)}	Drain to Source On Resistance			100	Ω	$V_{GS} = 0V, I_{D} = 1mA$

PN4393 DYNAMIC ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

S	SYMBOL	CHARACTERISTIC	TYP	MIN	MAX	UNITS	CONDITIONS
	g _{fs}	Forward Transconductance	6			mS	$V_{DS} = 20V, I_{D} = 1mA, f = 1kHz$
	g _{os}	Output Conductance	25			μS	$V_{DS} = 20V$, $I_D = 1mA$, $f = 1kHz$
	r _{ds(on)}	Drain to Source On Resistance			100	Ω	$V_{GS} = 0V$, $I_D = 0A$, $f = 1kHz$
	C _{iss}	Input Capacitance	12		16		$V_{DS} = 20V$, $V_{GS} = 0V$, $f = 1MHz$
	C _{rss}	Reverse Transfer Capacitance	3.5		5	pF	$V_{DS} = 0V$, $V_{GS} = -5V$, $f = 1MHz$
	C _{rss}		3.4				$V_{DS} = 0V$, $V_{GS} = -7V$, $f = 1MHz$
	C _{rss}		3.0				$V_{DS} = 0V$, $V_{GS} = -12V$, $f = 1MHz$
	e _n	Equivalent Input Noise Voltage	3			nV/√Hz	$V_{DS} = 10V, I_{D} = 10mA, f = 1kHz$

PN4393 SWITCHING ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

SYMBOL	CHARACTERISTIC	TYP	MIN	MAX	UNITS	CONDITIONS
t _{d(on)}		2		15		
t _r	Turn On Time	2		5	ns	$V_{DD} = 10V$, $V_{GS(H)} = 0V$
t _{d(off)}	Turn Off Time	6		50		
t _f		13		30		

Notes: 1. Absolute ratings are limiting values above which serviceability may be impaired

TO-92 (Bottom View)

G

2. Pulse test: PW ≤ 300µs, Duty Cycle ≤ 3%

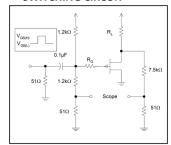
PN4393 SWITCHING CIRCUIT PARAMETERS

V _{GS(L)}	-5V
R_L	3200Ω
I _{D(on)}	3mA

Available Packages:

PN4393 in bare die.

Contact Micross for full package and die dimensions


Micross Components Europe

Tel: +44 1603 788967

Email: chipcomponents@micross.com Web: http://www.micross.com/distribution

