EH3745TS-5.000M

$\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\nu}}}}}}}}}}}}$

ELECTRICAL SPECIFICATIONS

Nominal Frequency	5.000 MHz
Frequency Tolerance/Stability	$\pm 50 \mathrm{ppm}$ Maximum (Inclusive of all conditions: Calibration Tolerance at 25 Operating Temperature Frequange, Supply Voltage Change, Output Load Change, First Year Agiing at 25°, $260^{\circ} \mathrm{C}$ Reflow, Shock, and Vibration)
Aging at 25 ${ }^{\circ} \mathrm{C}$	$\pm 5 \mathrm{ppm} /$ Year Maximum
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	$2.5 \mathrm{Vdc} \pm 5 \%$
Input Current	6 mA Maximum (No Load)
Output Voltage Logic High (Voh)	90% of Vdd Minimum (IOH $=-8 \mathrm{~mA})$
Output Voltage Logic Low (Vol)	10% of Vdd Maximum (IOL $=+8 \mathrm{~mA})$
Rise/Fall Time	6 nSec Maximum (Measured at 20\% to 80\% of waveform)
Duty Cycle	$50 \pm 10(\%)$ (Measured at 50% of waveform)
Load Drive Capability	15 pF Maximum
Output Logic Type	CMOS
Pin 1 Connection	Tri-State (High Impedance)
Tri-State Input Voltage (Vih and Vil)	90% of Vdd Minimum or No Connect to Enable Output, 10\% of Vdd Maximum to Disable Output (High Impedance)
Standby Current	$10 \mu \mathrm{~A} \mathrm{Maximum} \mathrm{(Pin} \mathrm{1} \mathrm{=} \mathrm{Ground)}$
Absolute Clock Jitter	$\pm 100 \mathrm{pSec}$ Maximum
Start Up Time	10 mSec Maximum
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

ENVIRONMENTAL \& MECHANICAL SPECIFICATIONS

ESD Susceptibility	MIL-STD-883, Method 3015, Class 1, HBM: 1500V
Fine Leak Test	MIL-STD-883, Method 1014, Condition A
Flammability	UL94-V0
Gross Leak Test	MIL-STD-883, Method 1014, Condition C
Mechanical Shock	MIL-STD-883, Method 2002, Condition B
Moisture Resistance	MIL-STD-883, Method 1004
Moisture Sensitivity	J-STD-020, MSL 1
Resistance to Soldering Heat	MIL-STD-202, Method 210, Condition K
Resistance to Solvents	MIL-STD-202, Method 215
Solderability	MIL-STD-883, Method 2003
Temperature Cycling	MIL-STD-883, Method 1010, Condition B
Vibration	MIL-STD-883, Method 2007, Condition A

EH3745TS-5.000M

MECHANICAL DIMENSIONS (all dimensions in millimeters)

Suggested Solder Pad Layout

All Dimensions in Millimeters

All Tolerances are ± 0.1

OUTPUT WAVEFORM \& TIMING DIAGRAM

Test Circuit for CMOS Output

Note 1: An external $0.01 \mu \mathrm{~F}$ ceramic bypass capacitor in parallel with a $0.1 \mu \mathrm{~F}$ high frequency ceramic bypass capacitor close (less than 2 mm) to the package ground and supply voltage pin is required.
Note 2: A low capacitance (<12pF), 10X attenuation factor, high impedance (>10Mohms), and high bandwidth ($>300 \mathrm{MHz}$) passive probe is recommended.
Note 3: Capacitance value C_{L} includes sum of all probe and fixture capacitance.

EH3745TS-5.000M

Recommended Solder Reflow Methods

High Temperature Infrared/Convection

T_{S} MAX to T_{L} (Ramp-up Rate)	$3^{\circ} \mathrm{C} /$ second Maximum
Preheat	
- Temperature Minimum ($\mathrm{T}_{\mathrm{s}} \mathrm{MIN}$)	$150^{\circ} \mathrm{C}$
- Temperature Typical (T_{s} TYP)	$175{ }^{\circ} \mathrm{C}$
- Temperature Maximum (TS MAX)	$200^{\circ} \mathrm{C}$
- Time ($\mathrm{ts}_{\text {s MIN} \text {) }}$	60-180 Seconds
Ramp-up Rate (T_{L} to T_{P})	$3^{\circ} \mathrm{C} /$ second Maximum
Time Maintained Above:	
- Temperature (T_{L})	$217{ }^{\circ} \mathrm{C}$
- Time ($t_{\text {L }}$)	60-150 Seconds
Peak Temperature (T_{P})	$260^{\circ} \mathrm{C}$ Maximum for 10 Seconds Maximum
Target Peak Temperature (T_{P} Target)	$250^{\circ} \mathrm{C}+0 /-5^{\circ} \mathrm{C}$
Time within $5^{\circ} \mathrm{C}$ of actual peak (t_{p})	20-40 seconds
Ramp-down Rate	$6^{\circ} \mathrm{C} /$ second Maximum
Time $25^{\circ} \mathrm{C}$ to Peak Temperature (t)	8 minutes Maximum
Moisture Sensitivity Level	Level 1

EH3745TS-5.000M

Recommended Solder Reflow Methods

Low Temperature Infrared/Convection $240^{\circ} \mathrm{C}$

T_{S} MAX to T_{L} (Ramp-up Rate)	$5^{\circ} \mathrm{C} /$ second Maximum
Preheat	
- Temperature Minimum ($\mathrm{T}_{\mathrm{s}} \mathrm{MIN}$)	N/A
- Temperature Typical (Ts TYP)	$150^{\circ} \mathrm{C}$
- Temperature Maximum (Ts MAX)	N/A
- Time (ts MIN)	60-120 Seconds
Ramp-up Rate (L_{L} to T_{P})	$5^{\circ} \mathrm{C} /$ second Maximum
Time Maintained Above:	
- Temperature (T_{L})	$150^{\circ} \mathrm{C}$
- Time (t_{L})	200 Seconds Maximum
Peak Temperature (T_{P})	$240^{\circ} \mathrm{C}$ Maximum
Target Peak Temperature (T_{P} Target)	$240^{\circ} \mathrm{C}$ Maximum 1 Time / $230^{\circ} \mathrm{C}$ Maximum 2 Times
Time within $5^{\circ} \mathrm{C}$ of actual peak (t_{p})	10 seconds Maximum 2 Times / 80 seconds Maximum 1 Time
Ramp-down Rate	$5^{\circ} \mathrm{C} /$ second Maximum
Time $25^{\circ} \mathrm{C}$ to Peak Temperature (t)	N/A
Moisture Sensitivity Level	Level 1

Low Temperature Manual Soldering

$185^{\circ} \mathrm{C}$ Maximum for 10 seconds Maximum, 2 times Maximum.
High Temperature Manual Soldering
$260^{\circ} \mathrm{C}$ Maximum for 5 seconds Maximum, 2 times Maximum.

