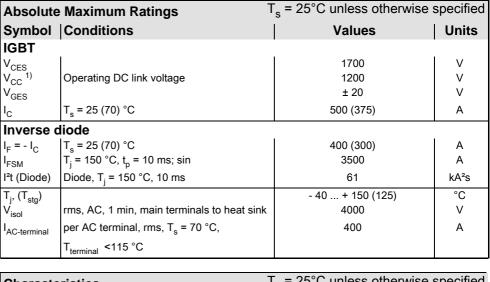

SKiiP 513GD172-3DUL V3

SKiiP® 3


6-pack-integrated intelligent Power System

Power section SKiiP 513GD172-3DUL V3

Preliminary Data

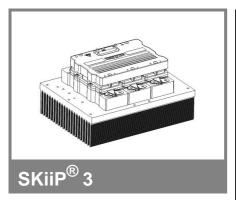
Power section features

- SKiiP technology inside
- Trench IGBTs
- CAL diode technology
- · Integrated current sensor
- · Integrated temperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP® 3 System)
- IEC 60068-1 (climate) 40/125/56
- UL recognized file no. E63532
- with assembly of suitable MKP capacitor per terminal (SEMIKRON type is recommended)

Charact	eristics	$T_{s} = 25^{\circ}$	°C unless	otherwise	specifie
Symbol	Conditions	min.	typ.	max.	Units
IGBT					
V _{CEsat}	I_C = 300 A, T_j = 25 (125) °C; measured at terminal		1,9 (2,2)	2,4	V
V_{CEO}	T _i = 25 (125) °C; at terminal		1 (0,9)	1,2 (1,1)	V
r _{CE}	T _i = 25 (125) °C; at terminal		3 (4,1)	3,9 (5)	mΩ
I _{CES}	$V_{GE} = 0 \text{ V}, V_{CE} = V_{CES},$ $T_i = 25 (125) ^{\circ}C$		1,2 (72)		mA
E _{on} + E _{off}	$I_{\rm C}^{\rm J}$ = 300 A, $V_{\rm CC}$ = 900 V		195		mJ
	T _i = 125 °C, V _{CC} = 1200 V		288		mJ
R _{CC+EE}	terminal chip, T _i = 25 °C		0,5		mΩ
L _{CE}	top, bottom		12		nΗ
C _{CHC}	per phase, AC-side		1,7		nF
Inverse	diode				
$V_F = V_{EC}$	I_F = 300 A, T_j = 25 (125) °C measured at terminal		1,9 (1,7)	2,4	V
V_{TO}	T _j = 25 (125) °C		1,1 (0,8)	1,4 (1,1)	V
r _T	$T_{i} = 25 (125) ^{\circ}C$		2,6 (2,9)	, ,	mΩ
Ė _{rr}	I _C = 300 A, V _{CC} = 900 V		36		mJ
	T _j = 125 °C, V _{CC} = 1200 V		43		mJ
Mechan	ical data				
M _{dc}	DC terminals, SI Units	6		8	Nm
M_{ac}	AC terminals, SI Units	13		15	Nm
W	SKiiP® 3 System w/o heat sink		2,4		kg
w	heat sink		7,5		kg

reference to heat sink; "r" reference to built-in temperature sensor (acc.IEC 60747-15) Region | Der IGBT | 0.059 | K/W

$R_{th(j-s)l}$	per IGBT						0,059	K/W
$R_{th(j-s)D}$	per diode)					0,115	K/W
Z_{th}	R _i (mK/W	/) (max. valu	ies)			tau	_i (s)	
	1	2	3	4	1	2	3	4
$Z_{th(j-r)I}$	10,2	28,8	21	0	363	0,18	0,04	1
$Z_{\text{th(j-r)D}}$	36	36	54	60	30	5	0,25	0,04
$Z_{th(r-a)}$	2,1	20	5,5	1,4	210	85	11	0,4


^{*} The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of

SKiiP 513GD172-3DUL V3

our personal.

2 16-12-2009 HER © by SEMIKRON

SKiiP 513GD172-3DUL V3

6-pack-integrated intelligent Power System

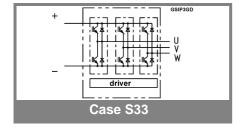
6-pack integrated gate driver SKiiP 513GD172-3DUL V3

Preliminary Data

Gate driver features

- CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and

DC-bus voltage (option)


- Short circuit protection
- · Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- Interlock of top/bottom switch
- · Isolation by transformer
- IEC 60068-1 (climate) 40/85/56

Absolute	Maximum Ratings	Γ _a = 25°C unless otherwise specified		
Symbol	Conditions	Values	Units	
V_{S2}	unstabilized 24 V power supply	30	V	
V_{i}	input signal voltage (high)	15 + 0,3	V	
dv/dt	secondary to primary side	75	kV/μs	
V_{isolIO}	input / output (AC, rms, 2s)	4000	V	
V _{isoIPD}	partial discharge extinction voltage, rms, Q _{PD} ≤10 pC;	1500	V	
V _{isol12}	output 1 / output 2 (AC, rms, 2s)	1500	V	
f _{sw}	switching frequency	14	kHz	
f _{out}	output frequency for I _{peak(1)} =I _C	14	kHz	
$T_{op} (T_{stg})$	operating / storage temperature	- 40 + 85	°C	

Characte	eristics	(T _a = 25°C			
Symbol	Conditions	ons min. typ. m		max.	Units
V_{S2}	supply voltage non stabilized	13	24	30	V
I _{S2}	V _{S2} = 13V - 30V	417+42*f/kHz+0,00014*(I _{AC} /A) ²			mA
V _{iT+}	input threshold voltage (High)	12,3			V
V_{iT-}	input threshold voltage (Low)	4,6			V
R _{IN}	input resistance		10		kΩ
C _{IN}	input capacitance		1		nF
t _{d(on)IO}	input-output turn-on propagation time		1,4		μs
t _{d(off)IO}	input-output turn-off propagation time		1,4		μs
tpERRRESET	error memory reset time		12,2		μs
t_{TD}	top / bottom switch interlock time		3		μs
I _{analogOUT}	max. 5mA; 8 V corresponds to 15 V supply voltage for external components		500		Α
I _{s1out}	max. load current			50	mA
I _{TRIPSC}	over current trip level (I _{analog} OUT = 10 V)		625		Α
T_tp U_DCTRIP	over temperature protection $U_{DC}\text{-protection (}U_{analog\ OUT}\text{= 9 V);}$	110	1200	120	°C V
	()				

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

