5V ECL Coaxial Cable Driver

The MC10EL89 is a differential fanout gate specifically designed to drive coaxial cables. The device is especially useful in Digital Video Broadcasting applications; for this application, since the system is polarity free, each output can be used as an independent driver. The driver boasts a gain of approximately 40 and produces output swings twice as large as a standard ECL output. When driving a coaxial cable, proper termination is required at both ends of the line to minimize signal loss. The 1.6 V output swings allow for termination at both ends of the cable, while maintaining the required 800 mV swing at the receiving end of the cable. Because of the larger output swings, the device cannot be terminated into the standard –2.0 V. All of the DC parameters are tested with a 50 Ω to –3.0 V load. The driver accepts a standard differential ECL input and can run off of the Digital Video Broadcast standard –5.0 V supply.

- 375 ps Propagation Delay
- 1.6 V Output Swings
- ESD Protection: >1 kV HBM, >100 V MM
- PECL Mode Operating Range: $V_{CC} = 4.2 \text{ V}$ to 5.7 V with $V_{EE} = 0 \text{ V}$
- NECL Mode Operating Range: V_{CC} = 0 V with V_{EE} = -4.2 V to -5.7 V
- Internal Input Pulldown Resistors
- Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
- Moisture Sensitivity Level 1
 For Additional Information, refer to Application Note AND8003/D
- Flammability Rating: UL-94 code V-0 @ 1/8", Oxygen Index 28 to 34
- Transistor Count = 31 devices

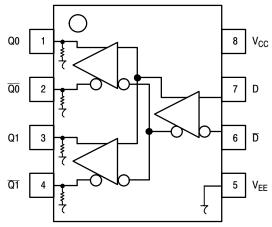


Figure 1. Logic Diagram and Pinout Assignment

PIN DESCRIPTION

PIN	Function
D, D Q0, Q0; Q1, Q1 V _{CC} V _{EE}	ECL Data Inputs ECL Data Outputs (1.6 V _{pp}) Positive Supply Negative Supply

ON Semiconductor™

http://onsemi.com

MARKING DIAGRAMS*

SO-8 D SUFFIX CASE 751

TSSOP-8 DT SUFFIX CASE 948R

A = Assembly Location

= Wafer Lot

Y = Year

W = Work Week

*For additional information, refer to Application Note AND8002/D

ORDERING INFORMATION

Device	Package	Shipping
MC10EL89D	SO-8	98 Units / Rail
MC10EL89DR2	SO-8	2500 / Reel
MC10EL89DT	TSSOP-8	100 Units / Rail
MC10EL89DTR2	TSSOP-8	2500 / Reel

MAXIMUM RATINGS (Note 1.)

Symbol	Parameter	Condition 1	Condition 2	Rating	Units
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		8	V
V _{EE}	NECL Mode Power Supply	V _{CC} = 0 V		-8	V
VI	PECL Mode Input Voltage	V _{EE} = 0 V	$V_{I} \leq V_{CC}$	6	V
	NECL Mode Input Voltage	$V_{CC} = 0 V$	$V_I \ge V_{EE}$	-6	V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
TA	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction to Ambient)	0 LFPM 500 LFPM	8 SOIC 8 SOIC	190 130	°C/W
θ_{JC}	Thermal Resistance (Junction to Case)	std bd	8 SOIC	41 to 44	°C/W
θJA	Thermal Resistance (Junction to Ambient)	0 LFPM 500 LFPM	8 TSSOP 8 TSSOP	185 140	°C/W
θ_{JC}	Thermal Resistance (Junction to Case)	std bd	8 TSSOP	41 to 44 ± 5%	°C/W
T _{sol}	Wave Solder	<2 to 3 sec @ 248°C		265	°C

^{1.} Maximum Ratings are those values beyond which device damage may occur.

10EL SERIES PECL DC CHARACTERISTICS $V_{CC} = 5.0 \text{ V}$; $V_{EE} = 0.0 \text{ V}$ (Note 2.)

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		23	28		23	28		23	28	mA
V _{OH}	Output HIGH Voltage (Note 6.)	3.77	3.90	4.02	3.87	3.98	4.10	3.94	4.04	4.19	V
V _{OL}	Output LOW Voltage (Note 3.)	2.10	2.28	2.42	2.00	2.30	2.44	1.95	2.33	2.49	V
V _{IH}	Input HIGH Voltage (Single Ended)	3770		4110	3870		4190	3940		4280	mV
V_{IL}	Input LOW Voltage (Single Ended)	3050		3500	3050		3520	3050		3555	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential) (Note 4.)	2.5		4.6	2.5		4.6	2.5		4.6	V
I _{IH}	Input HIGH Current		70	150		50	150		40	150	μΑ
I _{IL}	Input LOW Current	0.5	50		0.5	30		0.3	25		μΑ

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

2. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.25 V / -0.5 V.

- 3. Outputs are terminated through a 50 ohm resistor to V_{CC} –3 volts.
- 4. VIHCMR min varies 1:1 with VEE. VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between VPPmin and 1 V.

10EL SERIES NECL DC CHARACTERISTICS $V_{CC} = 0.0 \text{ V}$; $V_{EE} = -5.0 \text{ V}$ (Note 5.)

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		23	28		23	28		23	28	mA
V _{OH}	Output HIGH Voltage (Note 6.)	-1.23	-1.10	-0.98	-1.13	-1.02	-0.90	-1.06	-0.96	-0.81	V
V _{OL}	Output LOW Voltage (Note 6.)	-2.90	-2.72	-2.58	-3.00	-2.70	-2.56	-3.05	-2.67	-2.51	V
V _{IH}	Input HIGH Voltage (Single Ended)	-1230		-890	-1130		- 810	-1060		-720	mV
V _{IL}	Input LOW Voltage (Single Ended)	-1950		-1500	-1950		-1480	-1950		-1445	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential) (Note 7.)	-2.5		-0.4	-2.5		-0.4	-2.5		-0.4	V
I _{IH}	Input HIGH Current		70	150		50	150		20	150	μΑ
I _{IL}	Input LOW Current	0.5	50		0.5	30		0.3	25		μΑ

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

5. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.25 V / -0.5 V.

- 6. Outputs are terminated through a 50 ohm resistor to V_{CC} –3 volts.
- 7. V_{IHCMR} min varies 1:1 with V_{EE} . V_{IHCMR} max varies 1:1 with V_{CC} . The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between VPPmin and 1 V.

AC CHARACTERISTICS $V_{CC} = 5.0 \text{ V}; V_{EE} = 0.0 \text{ V} \text{ or } V_{CC} = 0.0 \text{ V}; V_{EE} = -5.0 \text{ V} \text{ (Note 8.)}$

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Toggle Frequency		TBD			1.5			TBD		GBs
t _{PLH} t _{PHL}	Propagation Delay to Output	200	340	480	260	350	440	310	400	490	ps
t _{SKEW}	Within-Device Skew		5	20		5	20		5	20	ps
t _{JITTER}	Cycle-to-Cycle Jitter (PRBS) @ 1.5 GBs		TBD			400			TBD		ps
V_{PP}	Input Swing (Note 9.)	150			150			150			mV
t _r t _f	Output Rise/Fall Times Q (20% – 80%)	205	330	455	205	330	455	205	330	455	ps

- 8. V_{EE} can vary +0.25 V / −0.5 V.
 9. V_{PP}(min) is the minimum input swing for which AC parameters are guaranteed. The device has a DC gain of ≈40.

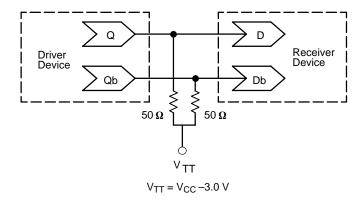


Figure 2. Typical Termination for Output Driver and Device Evaluation (Refer to Application Note AND8020 – Termination of ECL Logic Devices)

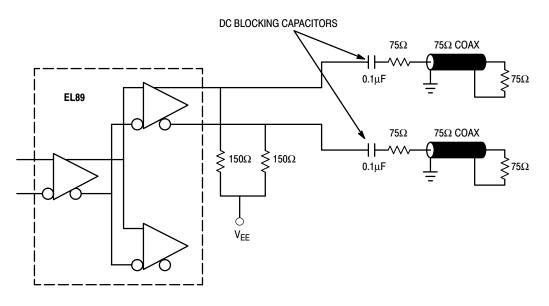


Figure 3. EL89 CATV Termination Configuration

Resource Reference of Application Notes

AN1404 – ECLinPS Circuit Performance at Non–Standard V_{IH} Levels

AN1405 – ECL Clock Distribution Techniques

AN1406 – Designing With PECL (ECL at +5.0 V)

AN1503 - ECLinPS I/O SPICE Modeling Kit

AN1504 – Metastability and the ECLinPS Family

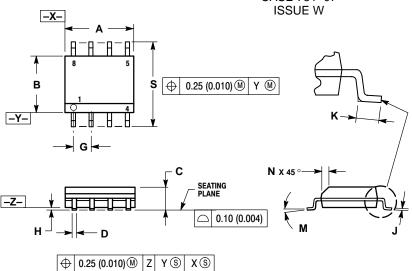
AN1560 - Low Voltage ECLinPS SPICE Modeling Kit

AN1568 – Interfacing Between LVDS and ECL

AN1596 - ECLinPS Lite Translator ELT Family SPICE I/O Model Kit

AN1650 – Using Wire–OR Ties in ECLinPS Designs

AN1672 – The ECL Translator Guide


AND8001 - Odd Number Counters Design

AND8002 – Marking and Date Codes

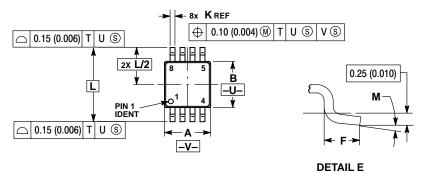
AND8020 – Termination of ECL Logic Devices

PACKAGE DIMENSIONS

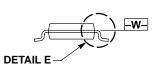
SO-8 **D SUFFIX** PLASTIC SOIC PACKAGE CASE 751-07

NOTES:

- NOTES:


 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	4.80	5.00	0.189	0.197	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.053	0.069	
D	0.33	0.51	0.013	0.020	
G	1.27	7 BSC	0.050 BSC		
Н	0.10	0.25	0.004	0.010	
J	0.19	0.25	0.007	0.010	
K	0.40	1.27	0.016	0.050	
M	0 °	8 °	0 °	8 °	
N	0.25	0.50	0.010	0.020	
S	5.80	6.20	0.228	0.244	


PACKAGE DIMENSIONS

TSSOP-8 **DT SUFFIX**

PLASTIC TSSOP PACKAGE CASE 948R-02 ISSUE A

☐ 0.10 (0.004) —T— SEATING PLANE

NOTES:

- NOTES:
 1 DIMENSIONING AND TOLERANCING PER ANSI
 Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH.
 PROTRUSIONS OR GATE BURRS. MOLD FLASH
 OR GATE BURRS SHALL NOT EXCEED 0.15
- OR GATE BURRS SHALL NUT EACHED 0.10
 (0.006) PER SIDE.

 4. DIMENSION B DOES NOT INCLUDE INTERLEAD
 FLASH OR PROTRUSION. INTERLEAD FLASH OR
 PROTRUSION SHALL NOT EXCEED 0.25 (0.010)
- PROTHUSION SHALL NOT EXCEED 0.25 (0.010)
 PER SIDE.

 5. TERMINAL NUMBERS ARE SHOWN FOR
 REFERENCE ONLY.
 6. DIMENSION A AND B ARE TO BE DETERMINED
 AT DATUM PLANE –W-.

	MILLIN	IETERS	ERS INCHE		
DIM	MIN	MAX	MIN	MAX	
Α	2.90	3.10	0.114	0.122	
В	2.90	3.10	0.114	0.122	
С	0.80	1.10	0.031	0.043	
D	0.05	0.15	0.002	0.006	
F	0.40	0.70	0.016	0.028	
G	0.65	BSC	0.026	BSC	
K	0.25	0.40	0.010	0.016	
L	4.90	BSC	0.193	BSC	
M	0°	6 °	0°	6°	

Notes

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular without during the statistics of any products releast. Solicition makes its warranty, representation of guarantee regarding the statistics of any product or any product or any product or any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

German Phone: (+1) 303-308-7140 (Mon-Fri 2:30pm to 7:00pm CET)

Email: ONlit-german@hibbertco.com

Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)

Email: ONlit-french@hibbertco.com

English Phone: (+1) 303-308-7142 (Mon-Fri 12:00pm to 5:00pm GMT)

Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781

*Available from Germany, France, Italy, UK, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST)

Email: ONlit-spanish@hibbertco.com

Toll-Free from Mexico: Dial 01-800-288-2872 for Access -

then Dial 866-297-9322

ASIA/PACIFIC: LDC for ON Semiconductor - Asia Support

Phone: 1–303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)

Toll Free from Hong Kong & Singapore:

001-800-4422-3781 Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center

4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031

Phone: 81-3-5740-2700

Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.