

3.3V 32K x 9 Static RAM

Features

- Single 3.3 ± 0.3V power supply
- High speed
- 20 ns
- Low active power
 - 235 mW
- Low standby power
 - 90 mW
- 2.0V data retention

 100 μW

 Ideal for low-voltage cache memory
- applications

 Easy memory expansion with CE₁.
- Easy memory expansion with CE₁, CE₂ and OE features
- CMOS for optimum speed/power

Automatic power-down when deselected

Functional Description

The CY7C1388 is a high-performance 3.3V CMOS static RAM organized as 32,768 words by 9 bits. Easy memory expansion is provided by an active LOW chip enable (CE₂), an active HIGH chip enable (OE), and three-state drivers. This device has an automatic power-down feature that reduces power consumption by more than 60% when deselected.

Writing to the device is accomplished by taking chip enable one (\overline{CE}_1) and write enable (\overline{WE}) inputs LOW and chip enable two (\overline{CE}_2) input HIGH. Data on the nine I/O pins $(I/O_0$ through I/O₈) is then written

into the location specified on the address pins $(A_0 \text{ through } A_{14})$.

Reading from the device is accomplished by taking chip enable one (\overline{CE}_1) and output enable (\overline{OE}) LOW while forcing write enable (\overline{WE}) and chip enable two (\overline{CE}_2) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The nine input/output pins (I/O₀ through I/O₈) are placed in a high-impedance state when the device is deselected ($\overline{\text{CE}}_1$ HIGH or $\overline{\text{CE}}_2$ LOW), the outputs are disabled ($\overline{\text{OE}}$ HIGH), or during a write operation ($\overline{\text{CE}}_1$ LOW, $\overline{\text{CE}}_2$ HIGH, and $\overline{\text{WE}}$ LOW).

THe CY7C1388 is available in standard 300-mil-wide DIPs and SOJs. A die coat is used to ensure alpha immunity.

Selection Guide

	7C1388-20	7C1388-25	7C1388-35
Maximum Access Time (ns)	20	25	35
Maximum Operating Current (mA)	65	60	55
Maximum Standby Current (mA)	25	25	25

Maximum Ratings
(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature 65°C to +150°C
Ambient Temperature with
Power Applied – 55°C to +125°C
Supply Voltage on V_{CC} to Relative GND 0.5V to +3.6V
DC Voltage Applied to Outputs in High Z State ^[1] 0.5V to V _{CC} + 0.3V
in High Z State ^[1] -0.5 V to $V_{CC} + 0.3$ V
DC Input Voltage ^[1] -0.5 V to V _{CC} + 0.3 V

Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	. >2001V
Latch-Up Current	>200 mA

Operating Range

Range	Ambient Temperature	v _{cc}
Commercial	0°C to +70°C	$3.3V \pm 0.3V$

Electrical Characteristics Over the Operating Range^[2]

			7C1388-20		7C13	88-25	7C1388-35		
Parameter	Description	Test Conditions	Min.	Max.	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -2.0 \text{ mA}$	2.4		2.4		2.4		V
V_{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 2.0 \text{ mA}$		0.4		0.4		0.4	V
V_{IH}	Input HIGH Voltage		2.0	V _{CC} +0.3V	2.0	V _{CC} + 0.3V	2.0	V _{CC} +0.3V	V
V _{IL}	Input LOW Voltage[1]		-0.3	0.8	-0.3	0.8	-0.3	0.8	V
I _{IX}	Input Load Current	$GND \le V_I \le V_{CC}$	-1	+1	-1	+1	-1	+1	μА
I_{OZ}	Output Leakage Current	$\begin{array}{l} \text{GND} \leq V_{I} \leq V_{CC}, \\ \text{Output Disabled} \end{array}$	-2	+2	-2	+2	-2	+2	μА
I _{OS}	Output Short Circuit Current ^[3]	V _{CC} =Max., V _{OUT} =GND		-300		-300		-300	mA
I_{CC}	V _{CC} Operating Supply Current	V _{CC} =Max., I _{OUT} =0 mA, f=f _{MAX} =1/t _{RC}		65		60		55	mA
I_{SB1}	Automatic CE Power-Down Current TTL Inputs	$\begin{array}{l} \text{Max. } V_{CC}, \overline{CE}_1 \geq V_{IH} \text{ or } \\ CE_2 \leq V_{IL}, V_{IN} \geq V_{IH} \text{ or } \\ V_{IN} \leq V_{IL}, f = f_{MAX} \end{array}$		25		25		25	mA
I _{SB2}	Automatic CE Power-Down Current — CMOS Inputs	$\begin{array}{l} \text{Max. } V_{CC}, \overline{CE}_1 \geq V_{CC} - 0.3V \\ \text{or } CE_2 \leq 0.3V, V_{IN} \geq V_{CC} \\ -0.3V \text{ or } V_{IN} \leq 0.3V, f = 0 \end{array}$		500		500		500	μА

Capacitance^[4]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN} : Addresses	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	6	pF
C _{IN} : Controls		$V_{CC} = 3.3V$	8	pF
C _{OUT}	Output Capacitance		8	pF

- Notes:
 1. Minimum voltage is equal to -2.0 for pulse durations of less than 20
- See the last page of this specification for Group A subgroup testing information.
- 3. Not more than one output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
- Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms^[5, 6]

3.0V ALL INPUT PULSES 90% 90% $\leq 3 \text{ ns}$ $\leq 3 \text{ ns}$ $\leq 3 \text{ ns}$

Equivalent to:

THÉVENIN EQUIVALENT

500Ω

OUTPUT • 1.40V

Switching Characteristics Over the Operating Range[2, 5]

		7C13	88-20	7C1388-25		7C1388-35		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ CYCLE	•					1,	A	
t _{RC}	Read Cycle Time			25		35		ns
t _{AA}	Address to Data Valid		20		25		35	ns
t _{OHA}	Data Hold from Address Change	3		3		3		ns
t _{ACE}	CE ₁ LOW or CE ₂ HIGH to Data Valid		20		25		35	ns
t _{DOE}	OE LOW to Data Valid		8		9		10	ns
tLZOE	OE LOW to Low Z ^[7]	0	1	0		0		ns
t _{HZOE}	OE HIGH to High Z ^[6, 7]	1	7		7		7	ns
t _{LZCE}	CE ₁ LOW or CE ₂ HIGH to Low Z ^[7]	3		3		3		ns
t _{HZCE}	CE ₁ HIGH or CE ₂ LOW to High Z ^[6, 7]		8		8		8	ns
t_{PU}	CE ₁ LOW or CE ₂ HIGH to Power-Up	0	1	0		0		ns
$t_{\rm PD}$	CE ₁ HIGH or CE ₂ LOW to Power-Down		20		25	† - · · · ·	35	ns
WRITE CYCLE	[8, 9]							
t _{WC}	Write Cycle Time	20	T	25		35		ns
t _{SCE}	CE ₁ LOW or CE ₂ HIGH to Write End	12	1	15		20		ns
t _{AW}	Address Set-Up to Write End	12	† · · · · · · · ·	15		20		ns
t _{HA}	Address Hold from Write End	0		0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		0	1	ns
t _{PWE}	WE Pulse Width	12		15		20		ns
t _{SD}	Data Set-Up to Write End	10		11	1	12		ns
t _{HD}	Data Hold from Write End	0	1	0		0		ns
tHZWE	WE LOW to High Z ^[6]		7		7		7	ns
tLZWE	WE HIGH to Low Z ^[7]	3		3	† 	3	1	ns

Notes:

- Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and load capacitance C_L = 30 pF.
- t_{HZOE}, t_{HZCE}, and t_{HZWE} are specified with C_L = 5 pF of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.
- At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any given device.
- The internal write time of the memory is defined by the overlap of CE₁ LOW, CE₂ HIGH, and WE LOW. All three signals must be asserted to initiate a write and any signal can terminate a write by being deas-
- serted. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
- The minimum write cycle time for write cycle #3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.

Data Retention Characteristics Over the Operating Range

Parameter	Description	Conditions ^[10]	Min.	Max.	Unit
V_{DR}	V _{CC} for Data Retention		2.0		v
I _{CCDR}	Data Retention Current	$V_{\text{CC}} = V_{\text{DR}} = 2.0 \text{V},$ $\overline{\text{CE}}_1 \ge V_{\text{CC}} - 0.3 \text{V or}$		50	μΑ
$t_{\rm CDR}^{[4]}$	Chip Deselect to Data Retention Time	$CE_1 \ge V_{CC} - 0.3V$ or $CE_2 \le 0.3V$, $V_{IN} \ge V_{CC} - 0.3V$ or $V_{IN} < 0.3V$	0		ns
$t_R^{[4]}$	Operation Recovery Time	1 –	t _{RC}		ns

Data Retention Waveform

Switching Waveforms

Read Cycle No. 1[11, 12]

Notes:

- 10. No input may exceed $V_{CC} + 0.3V$. 11. Device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$.
- 12. WE is HIGH for read cycle.

- 13. Timing parameters are the same for all chip-enable signals (\overline{CE}_1 and \overline{CE}_2). Only the timing for \overline{CE}_1 is shown.
- 14. Address valid prior to or coincident with $\overline{\text{CE}}$ transition LOW.

Switching Waveforms (continued)

Notes: 15. Data I/O is high impedance if \overline{OE} = V_{IH} .

16. If \overline{CE} goes HIGH simultaneously with \overline{WE} HIGH, the output remains in a high-impedance state.

Truth Table

CE	WE	ŌE	Input/Output	Mode	Power
Н	X	X	High Z	Deselect/Power-Down	Standby (I _{SB})
L	Н	L	Data Out	Read	Active (I _{CC})
L	L	X	Data In	Write	Active (I _{CC})
L	Н	Н	High Z	Deselect, Output Disabled	Active (I _{CC})

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
20	CY7C1388-20PC	P31	32-Lead (300-Mil) Molded DIP	Commercial
	CY7C1388-20VC	V32	32-Lead (300-Mil) Molded SOJ	7
25	CY7C1388-25PC	P31	32-Lead (300-Mil) Molded DIP	Commercial
	CY7C1388-25VC	V32	32-Lead (300-Mil) Molded SOJ	1
35	CY7C1388-35PC	P31	32-Lead (300-Mil) Molded DIP	Commercial
	CY7C1388-35VC	V32	32-Lead (300-Mil) Molded SOJ	1

MILITARY SPECIFICATIONS Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	1, 2, 3
V_{OL}	1, 2, 3
V_{IH}	1, 2, 3
V _{IL} Max.	1, 2, 3
I _{IX}	1, 2, 3
I_{OZ}	1, 2, 3
I_{CC}	1, 2, 3
I_{SB1}	1, 2, 3
I _{SB2}	1, 2, 3

Switching Characteristics

Parameter	Subgroups
READ CYCLE	•
t _{RC}	7, 8, 9, 10, 11
t _{AA}	7, 8, 9, 10, 11
t _{OHA}	7, 8, 9, 10, 11
t _{ACE}	7, 8, 9, 10, 11
t _{DOE}	7, 8, 9, 10, 11
WRITE CYCLE	
t _{WC}	7, 8, 9, 10, 11
t _{SCE}	7, 8, 9, 10, 11
t _{AW}	7, 8, 9, 10, 11
t _{HA}	7, 8, 9, 10, 11
t _{SA}	7, 8, 9, 10, 11
t _{PWE}	7, 8, 9, 10, 11
t _{SD}	7, 8, 9, 10, 11
t _{HD}	7, 8, 9, 10, 11

Document #: 38-00221-A