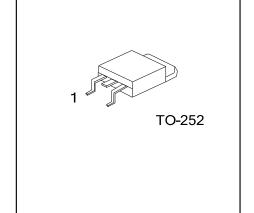


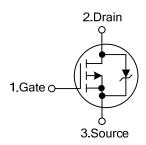
UNISONIC TECHNOLOGIES CO., LTD


UTT25P06 Preliminary Power MOSFET

-60 V, -27.5 A P-CHANNEL POWER MOSFET

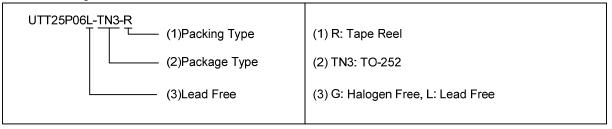
■ DESCRIPTION

The UTC **UTT25P06** is a P-channel power MOSFET using UTC's advanced technology to provide the customers with high switching speed and a minimum on-state resistance, and it can also withstand high energy in the avalanche.


This UTC **UTT25P06** is suitable for power supplies, converters, PWM motor controls and bridge circuits, etc.

■ FEATURES

- * $V_{DS} = -60V$
- * $I_D = -27.5A$
- * $R_{DS(ON)}$ =0.065 Ω @ V_{GS} =-10V, I_D =-12.5A; $R_{DS(ON)}$ =0.070 Ω @ V_{GS} =-10V, I_D =-25A
- * High Switching Speed


■ SYMBOL

■ ORDERING INFORMATION

Ordering Number		Dookogo	Pin Assignment			Dooking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
UTT25P06L-TN3-R	UTT25P06G-TN3-R	TO-252	G	D	S	Tape Reel	

Note: Pin Assignment: G: Gate D: Drain S: Source

■ **ABSOLUTE MAXIMUM RATINGS** (T_J=25°C, unless otherwise noted)

PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		V_{DSS}	-60	V	
Gate-Source Voltage	Continuous	V_{GS}	±15	V	
	Non-Repetitive (t _P ≤10ms)	V_{GSM}	±20	V	
Drain Current	Continuous @ T _A =25°C	I _D	27.5	Α	
	Pulsed (t _P ≤10µs)	I _{DM}	80	Α	
Power Dissipation	@T _A =25°C	P_D	120	W	
Avalanche Energy		_	600	m l	
$(V_{DD}=25V, V_{GS}=10V, I_{L(PK)}=20A, L=3mH, R_{G}=25\Omega)$		E _{AS}	800	mJ	
Junction Temperature		T_J	+175	°C	
Storage Temperature		T _{STG}	-55~+175	°C	

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. When surface mounted to an FR4 board using 1" pad size (Cu Area 1.127 in²).
- 3. When surface mounted to an FR4 board using the minimum recommended pad size (Cu Area 0.412 in²).

■ THERMAL CHARACTERISTICS

PARAMETER	SYMBOL	RATINGS	UNIT	
Lunction to Ambient	0	46.8 (Note 2)	°C/W	
Junction to Ambient	θ_{JA}	63.2 (Note 3)	C/VV	
Junction to Case	$\theta_{ m JC}$	1.25	°C/W	

■ **ELECTRICAL CHARACTERISTICS** (T_C=25°C, unless otherwise noted)

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
OFF CHARACTERISTICS								
Drain-Source Breakdown Voltage (Note 1)		BV _{DSS}	I_D =-250 μ A, V_{GS} =0 V	-60			V	
			Positive Temperature Coefficient		64		mV/°C	
Drain-Source Leakage Current			V _{GS} =0V, V _{DS} =-60V, T _J =25°C			-10	μA	
		I _{DSS}	V _{GS} =0V, V _{DS} =-60V, T _J =150°C			-100		
Gate- Source Leakage Current	Forward		V _{GS} =+15V, V _{DS} =0V			+100	nA	
	Reverse	- I _{GSS}	V _{GS} =-15V, V _{DS} =0V			-100	nA	
ON CHARACTERISTICS (Note 1)							
Gate Threshold Voltage		V _{GS(TH)}	$V_{DS}=V_{GS}$, $I_{D}=-250\mu A$	-2.0	-2.8	-4.0	V	
			Negative Threshold Temperature		6.2		mV/°C	
			Coefficient				IIIV/ C	
Static Drain-Source On-State Resistance		D	V _{GS} =-10V, I _D =-12.5A		0.065	0.075	Ω	
Static Dialii-Source Oil-State Nes	oistarice	$R_{DS(ON)}$	V _{GS} =-10V, I _D =-25A		0.070	0.082	12	
DYNAMIC PARAMETERS								
Input Capacitance		C_{ISS}			1200	1680	pF	
Output Capacitance		Coss	V _{GS} =0V, V _{DS} =-25V, f=1.0MHz		345	480	pF	
Reverse Transfer Capacitance		C_{RSS}			90	180	pF	
SWITCHING PARAMETERS (No	te 1, 2)							
Total Gate Charge		Q_{G}			33	50	nC	
Gate to Source Charge		Q_GS	V _{GS} =-10V, V _{DS} =-48V, I _D =-25A		6.5		nC	
Gate to Drain Charge		Q_{GD}			15		nC	
Turn-ON Delay Time		$t_{D(ON)}$			14	24	ns	
Rise Time		t_R	V _{DD} =-30V, I _D =-25A, V _{GS} =-10V,		72	118	ns	
Turn-OFF Delay Time		t _{D(OFF)}	$R_G=9.1\Omega$		43	68	ns	
Fall-Time		t_{F}			190	320	ns	
SOURCE- DRAIN DIODE RATING	GS AND	CHARACTE	RISTICS (Note 3)					
Drain-Source Diode Forward Voltage		V_{SD}	I _S =-25A, V _{GS} =0V		-1.8	-2.5	V	
			I _S =-25 A, V _{GS} =0V, T _J =150°C		-1.4		V	
Body Diode Reverse Recovery Time		t_{RR}	I _S =-25A, V _{GS} =0V, dI _S /dt=100A/μs		70		ns	
Body Diode Reverse Recovery Charge		Q_{RR}			0.2		μC	

Notes: 1. Indicates Pulse Test: Pulse Width≤300µs, Duty Cycle≤2%.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

^{2.} Switching characteristics are independent of operating junction temperatures.