BIPOLAR ANALOG INTEGRATED CIRCUIT
 μ PC1830

FILTER-CONTAINING VIDEO CHROMA, SYNCHRONIZING SIGNAL PROCESSING LSI COMPATIBLE WITH NTSC/PAL SYSTEM

DESCRIPTION

The $\mu \mathrm{PC} 1830$ is a filter-containing video chroma, synchronizing signal processing LSI compatible with the NTSC/ PAL system. A decoder which converts composite video or separate Y / C video signals into a brightness signal and a color difference signal and outputs the result, and a matrix which comprises independent brightness signal/color difference signal input pins are integrated on one chip.

Decoder output can be used to drive an A/D converter; it is appropriate for picture-in-picture screen signal processing and multimedia boards.

FEATURES

- Contains a trap filter, band-pass filter, delay line, and color difference output low-pass filter.

Peripheral parts can be drastically reduced.

- Low power consumption

Appropriate for use with digital boards because of 5-V single power supply operation.

- DC control for user adjustment pins

Centralized control can be performed by a microcontroller.

- One chip compatible with both NTSC and PAL systems

Boards common to NTSC and PAL systems can be easily constructed.

- S pin input

Supports composite and separate Y/C video signal inputs.

- Demodulation ratio/demodulation angle change (matrix)

Demodulation ratio/demodulation angle can be selected in response to the NTSC or PAL system.

- Contains color difference tint control

Fine adjustment of the demodulation axis can be made for both the NTSC and PAL systems.

ORDERING INFORMATION

Part Number	Package
$\mu \mathrm{PC} 1830 \mathrm{GT}$	42-pin plastic shrink SOP $(375 \mathrm{mil})$

1. SYSTEM BLOCK DIAGRAM

VIDEO CAPTURE SYSTEM BLOCK DIAGRAM

2. BLOCK DIAGRAM

3. PIN CONFIGURATION (Top View)

42-pin plastic shrink SOP (375 mil) μ PC1830GT

4. PIN EQUIVALENT CIRCUIT DIAGRAMS

Pin No.	Pin name	Equivalent circuit	Function descriptions
6	fv 50/60 switch		Vertical frequency (fv) switch pin. When the pin voltage is 2.2 V or less, the vertical frequency changes to 50 Hz ; when 2.8 V or more, to 60 Hz .
7	Power supply (synchronous section)		Synchronous section power supply.
8	Color killer output	Vcc	Color killer output pin.
9	Blanking pulse output		Horizontal blanking pulse output pin.
10	HD pulse output		HD pulse output pin
11	VD pulse output		VD pulse output pin.
12	Y output	Vcc	Y signal is output. DC level is approx. 2.0 V .
13	R-Y output		Decoder R-Y and B-Y color difference signal output pins. DC level is approx. 2.5 V.
14	B-Y output	$\xi_{\pi} 50 \Omega$	
15	GND (video section)		Video section ground.

\begin{tabular}{|c|c|c|c|}
\hline Pin No. \& Pin name \& Equivalent circuit \& Function descriptions

\hline 22 \& Clamp pulse input \& \& Matrix clamp pulse input pin. Clamp operation is performed at 2.8 V or more.

\hline 23

24 \& R output \& \& Matrix R, G, and B output pins. DC level is approx. 2.0 V . Sync. signal component, added to Y-input (16 pin), appears in R, G, and B output pins.

\hline 25 \& B output \& \&

\hline 26 \& Color killer filter \& \& Filter connection pin of color killer sync detector.

\hline 27 \& fsc VCO output \& \& fsc VCO oscillator output pin. Connect this pin to pin 28 via a 3.58 MHz oscillation filter and to pin 29 via a 4.43 MHz oscillation filter.

\hline
\end{tabular}

Pin No.	Pin name	Equivalent circuit	Function descriptions
28	fsc VCO input (3.58 MHz)	Vcc	fsc VCO input pins. Connect a 3.58 MHz oscillation filter between pins 27 and 28 and a 4.43 MHz
29	fsc VCO input (4.43 MHz)		oscillation filter between pins 27 and 29. Switch of pin 28 input and pin 29 input is suppressed in response to pin 41 (fsc switch) voltage.
30	Chroma APC filter		Pin for connecting filter of chroma APC detector.

Pin No.	Pin name	Equivalent circuit	Function descriptions
31	fo adjustment filter		Pin for connecting filter of fo automatic adjustment loop.
32	ACC filter		Pin for connecting filter of ACC detector.
33	GND (chroma section)		Chroma section ground.
34	Separate chroma input		Separate chroma signal input pin. This pin also serves as a separate and composite switch input pin. If the pin voltage is set to 3.7 V or more, composite input mode is entered.
35	Power supply (chroma section)		Chroma section power supply.

\begin{tabular}{|c|c|c|c|}
\hline Pin No. \& Pin name \& Equivalent circuit \& Function descriptions

\hline 36 \& Composite video signal input \& \& Composite video signal or separate Y signal input pin. This pin also serves as a clamp pin. Input the signal with C coupling. DC level is approx. 2.3 V.

\hline 37

38 \& | Subcolor control |
| :--- |
| Contrast control | \& \& Decoder color and contrast adjustment pins.

\hline 39 \& | Sync. |
| :--- |
| separation input | \& \& Input pin of sync. separation circuit.

\hline
\end{tabular}

Pin No. | Pin name |
| :--- | :--- | :--- | :--- |
| filter | sync. detect

5. BLOCK OPERATION

5.1 Video Signal Processing Section

(1) Input signal

After coupling by a capacitor ($0.22 \mu \mathrm{~F}$), a $1 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ composite video signal is input to the composite video signal input pin (pin 36).
(2) Clamp circuit

The clamp circuit controls the pedestal voltage level to be constant to make it a reference voltage for the post-stage signal processing.
(3) Chroma trap circuit

Eliminates the chroma signal (NTSC system: approximately 3.58 MHz , PAL system: approximately 4.43 MHz) from a composite video signal and extracts a brightness signal.
(4) Separate/composite switching circuit

Operates as shown in Table 5-1 according to the voltage of the separate chroma input pin (pin 34).
Table 5-1. Operation when Switching Separate/Composite Signals

Separate chroma input pin (pin 34) voltage	Mode	Brightness signal processing	ACC amp input
Less than 3.7 V	Y/C separate input	Without chroma trap	Input from separate chroma
3.7 V or higher	Composite video input	With chroma trap	Input from chroma BPF

(5) Delay circuit

Compensates for the delay between the brightness signal and chroma signal by delaying the brightness signal.
(6) Contrast adjustment circuit

Adjusts the amplitude of the brightness signal output from the Y output pin (pin 12) according to the voltage of the contrast control pin (pin 38).
The control characteristic is shown in Figure 5-1.

Figure 5-1. Contrast Control Characteristic

5.2 Chroma Signal Processing Section

(1) Input signal

- Composite video signal input

After coupling by a capacitor ($0.22 \mu \mathrm{~F}$), a $1 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ composite video signal is input to the composite video signal input pin (pin 36).

- Separate chroma signal input

After coupling by a capacitor (1000 pF), a chroma signal whose burst signal amplitude is $150 \mathrm{mV}_{\mathrm{p}-\mathrm{p}}$ is input to the separate chroma input pin (pin 34).

(2) Chroma BPF circuit

Separates the chroma signal from a composite video signal.

(3) Separate/composite switching circuit

When the potential of the separate chroma input pin (pin 34) is 3.7 V or higher (in composite mode), switches the ACC amp input from the chroma input pin to the chroma BPF circuit output. Processing of the brightness signal at this time is switched so that it passes through the chroma trap circuit.
Operation when switching separate/composite signals is shown in Table 5-1.
(4) ACC (Auto Color Control) amplification circuit

Extracts the burst signal, detects its level and smoothes the voltage of the ACC filter pin (pin 32) by an external capacitor.
This smoothed voltage controls color gain to keep the amplitude of the burst signal constant.

(5) Subcolor control circuit

According to the voltage of the subcolor control pin (pin 37), controls the amplitude of the chroma signal output from the ACC amplification circuit after separating the burst signal from it, and adjusts the amplitude of the color difference signal output from the R-Y output pin (pin 13) and B-Y output pin (pin 14). This controls color density on the screen. The control characteristic is shown in Figure 5-2.

Figure 5-2. Subcolor Control Characteristic

(6) Chroma APC (Auto Phase Control) circuit

Detects the phase difference between the burst signal extracted from the chroma signal and the signal from fscVCXO and smoothes the chroma APC filter pin (pin 30) using a capacitor. This smoothed voltage is used to control the fscVCXO oscillation frequency.

(7) Killer detection circuit

Detects the amplitude of the burst signal and executes a mute on the subcolor control circuit when there is no burst signal, preventing it from outputting a chroma signal to avoid color noise. In this case, the output of the color killer output pin (pin 8) is driven high.
The color killer sensitivity is determined by the time constant of a resistor and capacitor connected to the color killer filter pin (pin 26).
(8) IDENT detection circuit

Performs IDENT detection. With IDENT detection, if an NTSC signal (PAL signal in NTSC mode) is input in PAL mode, the color killer turns on and no chroma signal is output.
(9) 3.58 MHz/4.43 MHz VCXO, PAL SW circuit

Switches the fscVCO input pin between pin 28 (for 3.58 MHz) and pin 29 (for 4.43 MHz) by controlling the voltage of the fsc switching pin (pin 41) (2.8 V or higher: 3.58 MHz mode, 2.2 V or below: 4.43 MHz mode) to perform fsc oscillation at 3.58 MHz or 4.43 MHz . VCXO is controlled by the voltage of the chroma APC filter pin (pin 30) smoothed by the chroma APC circuit and its phase is synchronized with the input burst signal.
The PAL SW circuit inverts the phase of a signal on the R-Y demodulation axis every 1H by IDENT detection.

(10) R-Y, B-Y demodulation circuit

Performs demodulation using the chroma signal output from the ACC circuit, an R-Y demodulation axis signal and a B-Y demodulation axis signal output from fscVCXO, and multiplies $R-Y$ by 1.4 and $B-Y$ by 2.03 .

5.3 Matrix Section

(1) Input signal

- Brightness input signal

After coupling by a capacitor ($0.22 \mu \mathrm{~F}$), a brightness signal which has $1 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ of video part is input to the Y input pin (pin 16).

- Color difference input signal

After coupling by a capacitor $(0.22 \mu \mathrm{~F}), 1 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \mathrm{R}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$ signals are input to the $\mathrm{R}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$ input pins (pins 18 and 19).
(2) $\mathrm{Y}, \mathrm{R}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$ input clamp circuit

Clamps $\mathrm{Y}, \mathrm{R}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$ signals when the voltage of the clamp pulse input pin (pin 22) is 2.8 V or higher.
Input a clamp pulse to the clamp pulse input pin (pin 22) in synchronization with the burst section of an input signal as shown in Figure 5-3.
In the application circuit example, adjust the position of the clamp pulse by DELAY (μ PD4538B external variable resistor: $10 \mathrm{k} \Omega$) and the clamp pulse width by PD ($\mu \mathrm{PD} 4538 \mathrm{~B}$ external variable resistor: $10 \mathrm{k} \Omega$).

Figure 5-3. 22-Pin Input Clamp Pulse Waveform

(3) Amplification color control circuit

Adjusts the amplitude of a color difference signal input to the R-Y input pin (pin 18) and B-Y input pin (pin 19) according to the voltage of the color control pin (pin20). This controls the color density on the screen.
When using a matrix, adjust the color density mainly using this color control and fix the voltage of the subcolor control pin (pin 37) at 2 V (TYP.).
The control characteristic is shown in Figure 5-4.

Figure 5-4. Color Control Characteristic

(4) Tint control circuit

Controls the phase of a color difference signal whose amplitude is adjusted by the color control circuit, in a range of $\pm 45^{\circ}$ according to the voltage of the tint control pin (pin 21), and adjusts tint on the screen.
Table 5-2 shows the demodulation angle and demodulation ratio in each mode and Figure 5-5 shows the control characteristic.

Table 5-2. Demodulation Angle and Demodulation Ratio when Tint Control Pin (Pin 21) Voltage $=2 \mathrm{~V}$ (TYP.)

Mode	Demodulation angle ($\angle \mathrm{R}-\mathrm{Y}$)	Demodulation ratio (R-Y/B-Y)
NTSC	105° (TYP.)	0.75 (TYP.)
PAL	90° (TYP.)	0.61 (TYP.)

Figure 5-5. Tint Control Characteristic

(5) G-Y demodulation circuit

Demodulates G-Y using (R-Y)', (B-Y)' which is color difference signal after tint adjustment and the following expression.

G-Y demodulation expression: $(\mathrm{G}-\mathrm{Y})=-0.51 \times(\mathrm{R}-\mathrm{Y})^{\prime}-0.19 \times(\mathrm{B}-\mathrm{Y})^{\prime}$
(6) RGB matrix circuit

Adds a brightness signal: Y to each of $(R-Y)^{\prime},(B-Y)^{\prime}$ and $G-Y$ to create R, G, and B signals.

5.4 Synchronizing Signal Processing Section

(1) Input signal

A composite video signal or brightness signal is input to the synchronizing separate input pin (pin 39) at 1 Vp-p.
(2) Sync. separation circuit

Separates the sync. signal from a composite video signal. The slice level can be changed using an external resistor:
Rx (see Figure 5-6, TYP. = 220Ω).
The operation of the $\mu \mathrm{PC} 1830$ sync. separation circuit is explained below.
Figure $5-6$ is an equivalent circuit diagram of the $\mu \mathrm{PC} 1830$ sync. separation circuit.
Figure 5-6. μ PC1830 Sync. Separate Input Section Equivalent Circuit

In Figure 5-6, the slice level of sync. separation is determined as follows:
When a negative sync. video signal is input, charge current Isp flows from the $\mu \mathrm{PC} 1830$ to Co so that the synchronization peak (minimum potential) becomes approximately 2.5 V . The voltage of the sync. separate input pin (pin 39) becomes 2.5 V or higher during a period other than the synchronization peak (minimum potential), thus cutting off transistor TR1 (reducing the collector current of TR1). Consequently, a charge in Co is discharged via Ro and Rx by current Ix during this cut-off period. Figure 5-7 illustrates this situation.

Figure 5-7. Sync. Separation Waveform

Vs in Figure 5-7 represents the slice voltage and can be expressed in the following expression if it is assumed that Co is sufficiently large, and both Ix and Isp are linear.

$$
\mathrm{Vs}=2.5 \times(\mathrm{Rx} / \mathrm{Ro}) \times(\mathrm{T} 2 / \mathrm{T} 1)[\mathrm{V}]
$$

The $\mu \mathrm{PC} 1830$ amplifies the part lower than this slice voltage (V s) to perform sync. separation.
To determine sync. separation sensitivity, change $R x$ to set V s. Decreasing V s is advantageous for separation of the horizontal sync. part, but disadvantageous for separation of the vertical sync. part. On the contrary, increasing Vs may cause a sync. failure (jitter) due to noise (spikes) of the horizontal sync. part. Therefore, it is necessary to optimize the constant in accordance with a signal input. As capacitance Co, select a sufficiently large value compared with the charge/discharge current. However, an excessive value may deteriorate the excessive response characteristic, failing to catch up with drastic APL variations of the input signal.

The larger Rx, the larger the slice level becomes. However, with large Rx if the sync. signal level drops (weak electric field signal, etc.) a video signal may be confused with a sync. signal and sliced, making synchronization unstable (abnormal).

Caution Since the measuring circuit uses capacitor coupling for input for ease of measurement, it is susceptible to APL variations. Therefore, when configuring the actual circuit, use a Sync Tip clamp circuit in the stage prior to inputting to the emitter follower to stabilize the synchronization peak potential and this will make the circuit more resistant to APL variations.

(3) Vertical filter circuit

Separates the vertical sync. signal from the sync. signal separated by the sync. separation circuit.

(4) Horizontal sync. detection circuit

Detects the presence of a horizontal sync. signal and changes the AFC time constant.

(5) AFC detection circuit

Performs phase detection on an input sync. signal and f f and outputs the phase difference in voltage.
Stops phase detection for 9 H of the vertical blanking period.

(6) 32 fH VCO

Controls VCO according to the voltage output by the AFC detection circuit and generates 32 f н oscillation clocks.
(7) Horizontal/vertical counter circuit

- Horizontal counter circuit

Divides a 32fн signal to generate horizontal timing signals such as HD and BLK signals.

- 525/625 counter circuit

Performs counting at 4 fH and generates a vertical timing signal.
Generates VD in 0.75 H delay from the falling edge of a vertical sync. signal in an odd field and in 0.75 H delay from the falling edge of a vertical sync. signal in an even field.

6. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter	Symbol	Ratings	Unit
Power supply voltage	Vcc	7.0	V
Video input signal voltage	VIY	Vcc	V
Chroma input signal voltage	VIc	Vcc	V
Synchronous separation input signal voltage	VIS	Vcc	V
Control signal voltage	Vicnt	Vcc	V
Permissible package power dissipation	Pd	500 (on board, $\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$)	mW
Operating ambient temperature	TA	-20 to +75	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-40 to +125	${ }^{\circ} \mathrm{C}$

Caution Even if one of the parameters exceeds its absolute maximum rating even momentarily, the quality of the product may be degraded. The absolute maximum rating therefore specifies the upper or lower limit of the value at which the product can be used without physical damages. Be sure not to exceed or fall below this values when using the product.

Recommended Operating Conditions

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage	Vcc		4.5	5.0	5.5	V
Composite video input voltage	Vyc		-	1.0	-	V_{p-p}
Separate chroma input signal voltage	Vc		-	150	-	$m V_{p-p}$
Synchronous separation input signal voltage	Vs		-	1.0	-	$\mathrm{V}_{\mathrm{p}-\mathrm{p}}$
Control signal voltage	$V_{\text {cont }}$		0	-	Vcc	V
Color difference input voltage	$\begin{aligned} & V_{\text {R-Y }} \\ & V_{B-Y} \end{aligned}$			1.0		Vp-p

ELECTRICAL SPECIFICATIONS ($\mathrm{T}_{\mathrm{A}}=+25 \pm \mathbf{~}^{\circ} \mathrm{C}, \mathrm{Vcc}=+5 \mathrm{~V}$ unless otherwise specified)

VIDEO SIGNAL PROCESSING SECTION

Parameter	Symbol	Conditions	Input signal	Composite /Separate	fsc (MHz)	PAL or NTSC	MIN.	TYP.	MAX.	Unit
Power supply current	Icc	With no input signal	-	-	-	-	50	70	90	mA
Video voltage gain	Av(comp)	Contrast $=$ max	Stair step (1) $\left(400 \mathrm{~m}_{\mathrm{p}-\mathrm{p}}\right)$	Both	$\begin{aligned} & \hline 3.58 / \\ & 4.43 \end{aligned}$	-	10.0	12.0	14.0	dB
Contrast variable range	evc	Max./min. contrast ratio	Stair step (1) $\left(400 \mathrm{~m}_{\mathrm{p}-\mathrm{p}}\right)$	Both	$\begin{aligned} & \hline 3.58 / \\ & 4.43 \end{aligned}$	-	30	-	-	dB
Video output DC voltage fluctuation when contrast is variable	Δ Eoyc	Output DC fluctuation, Contrast = max./min.	Sync. signal $\left(300 \mathrm{mV}_{\mathrm{p}-\mathrm{p}}\right)$ only	Both	$\begin{aligned} & 3.58 / \\ & 4.43 \end{aligned}$	-	-	0	± 400	mV
Video frequency characteristics	fv^{1}	$200 \mathrm{kHz} / 1.8 \mathrm{MHz}$ gain difference, Contrast $=$ max.	Sine wave (1)$\left(400 \mathrm{~m} V_{\mathrm{p}-\mathrm{p}}\right)$	Composite	4.43	-	-4	-2	0	dB
	fv 2				3.58	-	-5	-3	0	dB
	fv3	$200 \mathrm{kHz} / 5.5 \mathrm{MHz}$ gain difference, Contrast $=$ max.		Separate	4.43	-	0	+2	+4	dB
	f_{v}				3.58	-	-1	+1	+3	dB
Video input DC voltage	EYı	DC voltage of pin 36	Sync. signal $\left(300 \mathrm{mV} \mathrm{~V}_{\mathrm{p}-\mathrm{p}}\right)$ only	Both	$\begin{gathered} 3.58 / \\ 4.43 \end{gathered}$	-	2.1	2.5	3.0	V
Video output DC voltage	Eyo	Scan period voltage of pin 12 Contrast $=\max$.				-	1.7	2.0	2.4	V
Video output DC power supply voltage fluctuation	Δ Eyov	Eyo change when Vcc changes from 4.5 to 5.5 V Contrast $=\max$.	Sync. signal (300 m Vp-p) only	Both	$\begin{aligned} & 3.58 / \\ & 4.43 \end{aligned}$	-	-	0	± 100	mV
Video output gain power supply voltage fluctuation	$\Delta \mathrm{Avv}$	Video voltage gain change when Vcc changes from 4.5 to 5.5 V, Contrast $=\max$.	$\begin{aligned} & \text { Stair step (1) } \\ & \left(400 \mathrm{mV} \mathrm{~V}_{\mathrm{p}-\mathrm{p}}\right) \end{aligned}$	-	-	-	-0.5	0.0	$+0.5$	dB
Trap attenuation amount	$\Delta \mathrm{dt}$	Gain difference of $200 \mathrm{kHz} / 3.58 \mathrm{MHz}$ and $200 \mathrm{kHz} / 4.43 \mathrm{MHz}$ Contrast $=$ max.	Sine wave (1) ($400 \mathrm{mV} \mathrm{V}_{\mathrm{p}-\mathrm{p}}$)	Composite	$\begin{gathered} 3.58 / \\ 4.43 \end{gathered}$	-	-20	-	-	dB

Remark For the input signal, see Measuring Input Signal.

CHROMA SECTION

(1/3)

Parameter	Symbol	Conditions	Input	signal	Composite /Separate	fsc (MHz)	PAL or NTSC	MIN.	TYP.	MAX.	Unit	
Acc amplitude characteristics	Acc1	B-Y output level fluctuation. With reference to burst $300 \mathrm{mV}_{\text {p-p. }}$.	Color bar (2)	Burst 600 mV PR	Composite	4.43	-	-2.0	0.0	+2.0	dB	
	Acc2			(2)Burst $30 \mathrm{~m} V_{\text {pp }}$ Burst $600 \mathrm{mV} \mathrm{V}_{\text {pp }}$ Burst $30 \mathrm{~m} V_{\text {pp }}$			-	-7.0	-3.0	+1.0	dB	
	Асс3					3.58	-	-2.0	0.0	+2.0	dB	
	Acc4						-	-7.0	-3.0	+1.0	dB	
	Acc5	B-Y output level fluctuation. With reference to burst 300 mV p.p.		Burst 300 mV PR	Separate	4.43	-	-2.0	0.0	+2.0	dB	
	Acc6			Burst 15 mV p.			-	-7.0	-3.0	+1.0	dB	
	Acct			Burst 300 mV PR		3.58	-	-2.0	0.0	+2.0	dB	
	Асс8			Burst $15 \mathrm{mV}_{p-p}$			-	-7.0	-3.0	+1.0	dB	
Color killer setting point	екрс	Level at which killer output goes high with burst signal $300 \mathrm{mV}_{\mathrm{p}-\mathrm{p}}$ set to 0 dB .	Color bar (1)		Composite	4.43	PAL	-48	-40	-32	dB	
					3.58	NTSC	-48	-40	-32	dB		
	ekps	Level at which killer			Separate	4.43	PAL	-48	-40	-32	dB	
		burst signal 150 mV p-p set to 0 dB				3.58	NTSC	-48	-40	-32	dB	
Color killer color remainder	еок	B-Y output remaining level when killer output is high.	Color	bar (1)		-	-	-	0	-	50	$m V_{p-p}$
Color killer output, high	Ескн	Color killer output level when color killer is ON, loн $=-200 \mu \mathrm{~A}$.		-	-	-	-	3.9	4.05		V	
Color killer output, low	Ескь	Color killer output level when color killer is OFF, loL $=+200 \mu \mathrm{~A}$.		-	-	-	-		0.5	0.6	V	
Subcolor control variable range	ecc	B-Y output level ratio of max./min. subcolor.	Color	bar ©	Composite	4.43	-	30	45	-	dB	
Subcolor control color remainder	eoc	B-Y output remaining subcolor difference level, Color = min.	Color	bar (1)	Composite	4.43	-	0	-	50	$m V_{p-p}$	
APC pull-in range	fsp	APC pull-in frequency range when burst chroma frequency changes. ($\mathrm{fsc}=$ reference)	Color bar (1)		Composite	4.43	PAL	± 400	± 600	-	Hz	
					3.58	NTSC	± 400	± 600	-	Hz		
					Separate	4.43	PAL	± 400	± 600	-	Hz	
					3.58	NTSC	± 400	± 600	-	Hz		
VCO control sensitivity	β s	Calculate from oscillation freq. when APC filter pin voltage is 2.3/2.7 V.	-			-	4.43	-	1.0	1.2	1.4	$\mathrm{Hz} / \mathrm{mV}$
					3.58		-	1.0	1.2	1.4	$\mathrm{Hz} / \mathrm{mV}$	

Remark For the input signal, see Measuring Input Signal.

Parameter	Symbol	Conditions	Input signal	Composite /Separate	fsc (MHz)	PAL or NTSC	MIN.	TYP.	MAX.	Unit
VCO free-running frequency	fs	VCO oscillator freq.	Sync. signal$\text { (} 300 \mathrm{mV} \text { p.p) only }$	-	4.43	-	± 400	-	-	Hz
					3.58	-	± 400	-	-	Hz
PAL mode demoduIation ratio	$\left(\frac{R-Y}{B-Y}\right)_{D P}$	R-Y/B-Y output ratio	Rainbow color bar ($300 \mathrm{mV}_{\text {p-p }}$)	Composite	4.43	PAL	0.9	1.0	1.1	Times
NTSC mode demodulation ratio	$\left.\left\lvert\, \frac{R-Y}{B-Y}\right.\right)_{D N}$				3.58	NTSC	0.9	1.0	1.1	Times
PAL mode demodulation angle	$\angle \mathrm{R}-\mathrm{Y}_{\mathrm{DP}}$	R-Y demodulation angle	Rainbow color bar ($300 \mathrm{mV}_{\mathrm{p}-\mathrm{p}}$)	Composite	4.43	PAL	85	90	95	deg
NTSC mode demodulation angle	$\angle \mathrm{R}-\mathrm{Y}_{\mathrm{DN}}$				3.58	NTSC	85	90	95	deg
Maximum color difference output	евум	Subcolor = max.	Rainbow color bar ($300 \mathrm{mV}_{\mathrm{p}-\mathrm{p}}$)	Composite	4.43	-	1.3	1.6	1.9	$\mathrm{V}_{\mathrm{p}-\mathrm{p}}$
Color difference output remaining carrier level	ecar	R-Y, B-Y output remaining carrier level	-	-	3.58	NTSC	0	-	100	$m V_{p-p}$
Color difference output remaining harmonic level	еhar	Output remaining harmonic level, $R-Y, B-Y=1 V_{p-p}$	Color bar (1)	-	3.58	NTSC	0	-	100	$m V_{p-p}$
Color difference output frequency characteristics	fcp	$\Delta \mathrm{f}=50 / 500 \mathrm{kHz}$ R-Y, B-Y output level ratio	Since wave (2) ($400 \mathrm{mV}_{\mathrm{p}-\mathrm{p}}$)	Composite	4.43	PAL	-5	-3	0	dB
					3.58	NTSC				
	fcs	$\Delta \mathrm{f}=50 \mathrm{kHz} / 1 \mathrm{MHz}$ R-Y, B-Y output level ratio		Separate	4.43	PAL	-5	-3	0	dB
					3.58	NTSC				
Blanking stage difference	евцк	Subcolor = max. R-Y/B-Y output blank period/scan period DC voltage difference	Burst (300 mV p-p) only	-	4.43	PAL	-	0	20	mV
Line fluctuation	Δ Eory	Subcolor = max. Scan period DC voltage difference at every horizontal scanning period of R-Y output	Burst (300 $m V_{\text {p.p) }}$ only	-	4.43	PAL	-	0	20	mV
Color difference output pin voltage	Eory	$R-Y$ output DC voltage, With no signal	-	-	4.43	PAL	2.2	2.5	3.0	V
	Eoby	B-Y output DC voltage, With no signal								
Color difference output pin voltage fluctuation with power supply fluctuation	Δ Eoryv	Eory change when Vcc changes from 4.5 to 5.5 V	-	-	4.43	PAL		0	± 100	mV
	Δ Eobrv	Eoby change when Vcc changes from 4.5 to 5.5 V						0	± 100	mV

Remark For the input signal, see Measuring Input Signal.
(3/3)

Parameter	Symbol	Conditions	Input signal	Composite Separate	fsc $(M H z)$	PAL or NTSC	MIN.	TYP.	MAX.	Unit
Separate chroma input pin voltage	EIC	DC voltage of pin 34	-	Separate	-	-	1.2	1.5	1.8	V
Separate chroma input resistance	Ric	Calculate from input when EIC \rightarrow EIC +2 V	-	Separate	-	-	26	35	44	$\mathrm{k} \Omega$
Separate/composite change threshold voltage	EІстн	Voltage of pin 34 at which separate/ composite mode is changed	-	-	3.58	NTSC	3.1	3.4	3.7	V

Remark For the input signal, see Measuring Input Signal.

SYNCHRONOUS SECTION

Parameter	Symbol	Conditions	Input signal	Composite /Separate	fsc (MHz)	PAL or NTSC	MIN.	TYP.	MAX.	Unit
Sync. separation input DC voltage	EIs	Sync. separation input DC voltage at no signal	-	-	-	-	2.25	2.55	2.85	V
H sync. pull-in range	$\mathrm{fH}^{\text {P }}$	Frequencies at which horizontal AFC can be pulled, H sync width $=4.8 \mu \mathrm{~s}$	Sync. signal (300 mVp-p) only	-	-	-	± 400	-	-	Hz
Horizontal VCO control sensitivity	β H	Calculated from HD output frequency change when horizontal AFC filter pin voltage changes from 2.9 to 3.4 V, With no signal	-	-	-	-	1.2	1.5	1.9	$\mathrm{Hz} / \mathrm{mV}$
Horizontal VCO free-running freq.	f	Difference for 15.680 kHz of HD output frequency, With no signal	-	-	-	-	-200	0	+200	Hz
Horizontal VCO free-running freq. fluctuation with power supply voltage fluctuation	$\Delta f h v$	Change of f when Vcc changes from 4.5 to 5.5 V	-	-	-	-		0	± 50	Hz
HD pulse output, high	Енон	Ioh $=-200 \mu \mathrm{~A}$	Sync. signal (300 mV p-p) only	-	-	-	3.9	4.05	-	V
HD pulse output, low	Еноь	IoL $=+200 \mu \mathrm{~A}$	Sync. signal (300 mV p-p) only	-	-	-	-	0.5	0.6	V
HD pulse output width	twho	When HD pulse rising, falling is 2.5 V	Sync. signal (300 mV p.p) only	-	-	-	3.9	4.4	4.9	$\mu \mathrm{s}$
Blanking pulse output, high	Евьн	Ioh $=-200 \mu \mathrm{~A}$	Sync. signal (300 mV p-p) only	-	-	-	3.9	4.05	-	V
Blanking pulse output, low	Евць	loL $=+200 \mu \mathrm{~A}$	Sync. signal (300 mV p-p) only	-	-	-	-	0.5	0.6	V
Blanking pulse output, width	twbl	When blanking pulse rising, falling is 2.5 V	Sync. signal (300 mV p.p) only	-	-	-	9.9	10.4	10.9	$\mu \mathrm{s}$
Vertical free-running frequency (in $50-\mathrm{Hz}$ mode)	fv1	H sync. detect filter pin voltage $=0 \mathrm{~V}$	Sync. separate input of 3.5 V	-	-	-	-	fh/368	-	Hz
	fv2	H sync. detect filter pin voltage $=5 \mathrm{~V}$		-	-	-	-	fh/352	-	Hz
	fv3	H sync. detect filter pin voltage $=0 \mathrm{~V}$	Sync. separate input of -1 mA	-	-	-	-	fh/272	-	Hz
	fv	H sync. detect filter pin voltage $=5 \mathrm{~V}$		-	-	-	-	fH/288	-	Hz

Remark For the input signal, see Measuring Input Signal.
(2/2)

Parameter	Symbol	Conditions	Input signal	Composite /Separate	$\begin{array}{\|l} \hline \mathrm{fsc} \\ (\mathrm{MHz}) \end{array}$	$\begin{aligned} & \text { PAL or } \\ & \text { NTSC } \end{aligned}$	MIN.	TYP.	MAX.	Unit
Vertical free-running frequency (in $60-\mathrm{Hz}$ mode)	fv5	H sync. detect filter pin voltage $=0 \mathrm{~V}$	Sync. separate input of 3.5 V	-	-	-	-	fH/296	-	Hz
	fv6	H sync. detect filter pin voltage $=5 \mathrm{~V}$		-	-	-	-	fH/288	-	Hz
	fv	H sync. detect filter pin voltage $=0 \mathrm{~V}$	Sync. separate input of -1 mA	-	-	-	-	fH/232	-	Hz
	fv8	H sync. detect filter pin voltage $=5 \mathrm{~V}$		-	-	-	-	fH/240	-	Hz
VD pulse output, high	Evoh	Ioh $=-200 \mu \mathrm{~A}$	Sync. signal of $300 \mathrm{mV}_{\text {p.p }}$	-	-	-	3.9	4.05	-	V
VD pulse output, low	EvdL	loL $=+200 \mu \mathrm{~A}$		-	-	-	-	0.5	0.6	V
Even field VD pulse output width	twvoE		Sync. signal of 300 mV p-p	-	-	-	-	5.5	-	H
Odd field VD pulse output width	twvoo			-	-	-	-	6.0	-	H

Remark For the input signal, see Measuring Input Signal.

MODE CONTROL SECTION

Parameter	Symbol	Conditions	Input signal	Composite /Separate	fsc (MHz)	PAL or NTSC	MIN.	TYP.	MAX.	Unit
NTSC/PAL mode switch threshold voltage	EpN1	Voltage of pin 42 at which both decoder and matrix changes to NTSC or PAL mode simultaneously.	-	-	-	-	1.37	1.67	1.97	V
	EpN2	Voltage of pin 42 at which only matrix changes to NTSC or PAL mode and decoder remains in NTSC mode.	-	-	-	-	3.03	3.33	3.63	V
NTSC/PAL mode switch input pin current	IIpN	Input current of pin 42.	-	-	-	-	-0.5	+0.2	+2.0	$\mu \mathrm{A}$
Subcarrier frequency switch threshold voltage	Esc	Voltage of pin 41 at which fsc 3.58/4.43 mode is changed.	-	-	-	-	2.2	2.5	2.8	V
Subcarrier frequency switch input pin current	lisc	Input current of pin 41.	-	-	-	-	-2.0	-0.2	+0.5	$\mu \mathrm{A}$
Vertical frequency switch threshold voltage	EfV	Voltage of pin 6 at which fv 50/60 mode is changed.	-	-	-	-	2.2	2.5	2.8	V
Vertical frequency switch input pin current	lifv	Input current of pin 6.	-	-	-	-	-2.0	-0.2	+0.5	$\mu \mathrm{A}$

NTSC/PAL MODE SETTING

SW setting of pin 42	Voltage of pin 42	Decoder mode	Matrix mode
Mode 1	Lower than EPN1	PAL	PAL
Mode 2	Between EPN1 and EPN2	NTSC	NTSC
Mode 3	Higher than EPN2	NTSC	PAL

VERTICAL FREQUENCY (fv) SWITCHING

Voltage of pin 6	Vertical frequency fv
Lower than EFV	50 Hz
Higher than EFV	60 Hz

SUBCARRIER FREQUENCY (fsc) SWITCHING

Voltage of pin 41	Subcarrier frequency fsc
Lower than Esc	4.43 MHz
Higher than Esc	3.58 MHz

MATRIX SECTION

(1/2)

Parameter	Symbol	Conditions	Input signal	Composite /Separate	fsc (MHz)	PAL or NTSC	MIN.	TYP.	MAX.	Unit
Original color output Y voltage gain	AY	B output voltage gain.	$\begin{aligned} & \mathrm{Y}: \text { stair step (2) } \\ & \left(1 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}\right) \end{aligned}$	-	-	-	-2.0	0.0	+2.0	dB
Y voltage gain RGB output mutual difference	Δ Ayrgb	Mutual difference of R, G, and B output voltage gains.	Y:stair step (2) $\left(1 \mathrm{~V}_{\mathrm{p} \cdot \mathrm{p}}\right)$	-	-	-	-1.0	0.0	+1.0	dB
Y voltage gain fluctuation with power supply voltage fluctuation	$\Delta \mathrm{Arv}$	Difference between B output voltage gain and $A Y$ under the same conditions as Ay except that $\mathrm{Vcc}=$ 4.5 V, 5.5 V .	Y:stair step (2) $\left(1 \mathrm{~V}_{p-p}\right)$	-	-	-	-0.5	0.0	+0.5	dB
Y frequency characteristics	$f \mathrm{f}$	$200 \mathrm{kHz} / 6 \mathrm{MHz}$ B output gain difference.	Sine wave (4) $\left(1 \mathrm{~V}_{p \cdot p}\right)$	-	-	-	0	-3	-5	dB
B output color difference voltage gain	AB	B output voltage gain. Tint control voltage 2.0 V , Color $=$ max.	B-Y: stair step (1) ($400 \mathrm{mV}_{\mathrm{p} \cdot \mathrm{p}}$)	-	-	-	4.0	6.0	8.0	dB
Color control variable range	есм	Difference between B output gain and As. Tint control voltage 2.0 V , Color = min.	B-Y: stair step (1) (400 $\mathrm{mV} \mathrm{V}_{\mathrm{p}-\mathrm{p}}$)	-	-	-	35	45	-	dB
Color control color remainder	еосм	B output remaining color difference level. Tint control voltage 2.0 V , Color $=\mathrm{min}$.	B-Y: stair step (1) (400 $\mathrm{mV} \mathrm{V}_{\mathrm{p}-\mathrm{p}}$)	-	-	-	0	5	50	$m V_{p-p}$
Color difference voltage gain fluctuation with power supply voltage fluctuation	$\Delta \mathrm{Abv}$	Difference between each B output voltage gain and A_{B} under the same condition as A_{b} except that $V_{c c}$ is changed from 4.5 to 5.5 V	B-Y: stair step (1) ($400 \mathrm{mV} \mathrm{p}_{\text {P. }}$)	-	-	-	-0.5	0.0	+0.5	dB
Color difference freq. characteristics	fв	B output gain difference when freq. changes from 200 kHz to 6 MHz . Tint control voltage 2.0 V , Color = max.	$B-Y$: sine wave (3) (400 mV $\mathrm{m}_{\mathrm{p} \cdot \mathrm{p}}$)	-	-	-	0	-3	-5	dB
Tint control variable range	етмах.	See Note. Color = max.	$\begin{aligned} & \text { Stair step }(1) \\ & \left(400 \mathrm{mV}_{\mathrm{p} \cdot \mathrm{p}}\right) \end{aligned}$	-	-	PAL/ NTSC	+35	-	-	deg
	етміл.						-	-	-35	deg

Note B demodulation angle ϕ B is obtained from B output signal voltages using the following expressions:
B demodulation angle $\phi B=\tan ^{-1} \quad \frac{B_{1}}{B_{2}}$
Where, B_{1} : B output signal voltage when signal is input only to $R-Y$
B_{2} : B output signal voltage when signal is input only to $B-Y$,
етмах. and етmin. are obtained from the ϕ в values using the following expressions:
етмах. $=\phi B(4)-\phi B(2)$, етміл. $=\phi B(2)-\phi B(10)$
Where, $\phi_{B}(0), \phi_{B}(2), \phi_{B}(4)$: ϕ_{B} values when tint control voltage is $0,2,4 \mathrm{~V}$, respectively.
Remark For the input signal, see Measuring Input Signal.
(2/2)

Parameter	Symbol	Conditions	Input signal	Composite /Separate	fsc (MHz)	PAL or NTSC	MIN.	TYP.	MAX.	Unit
PAL mode demodulation ratio	($\left.\frac{R-Y}{B-Y}\right)^{\text {P }}$	Tint control = 2 V , Color = max. See Note1.	Stair step (1) ($400 \mathrm{mV} \mathrm{p}_{\text {p. }}$)	-	-	PAL	0.50	0.56	0.62	Times
	$\left(\frac{G-Y}{B-Y}\right)^{\prime}$ P						0.31	0.35	0.39	Times
PAL mode demodulation angle	$\angle R-Y_{\text {MP }}$						85	90	95	deg
	$\angle G-Y_{\text {MP }}$						228	237	246	deg
NTSC mode demodulation ratio	$\left(\frac{R-Y}{B-Y}\right) M N$					NTSC	0.69	0.75	0.83	Times
	$\left(\frac{G-Y}{B-Y}\right) \mathrm{MN}$						0.22	0.25	0.28	Times
NTSC mode demodulation angle	$\angle R-Y_{M N}$						100	105	110	deg
	$\angle G-Y_{M N}$						238	247	256	deg
Clamp pulse input threshold voltage	Eclp	Note 2	-	-	-	-	2.1	2.5	2.9	V
R-Y input pin voltage	EryI		-	-	-	-	2.1	2.5	2.9	V
B-Y input pin voltage	EbyI		-	-	-	-	2.1	2.5	2.9	V
R output pin voltage	Ero		-	-	-	-	1.6	2.0	2.4	V
G output pin voltage	Ego		-	-	-	-	1.6	2.0	2.4	V
B output pin voltage	Ево		-	-	-	-	1.6	2.0	2.4	V
DC difference voltage between R, G, B outputs	$\Delta \mathrm{E}_{\text {X- }}$	Maximum value of difference voltages between Ero, Ego, and Eво	-	-	-	-			300	mV
RGB output DC fluctuation in color control mode	$\Delta E_{\text {bgbc }}$	Maximum value of Ero, Ego, Ebo fluctuation Color control = max. $/$ min. Tint control $=2.0 \mathrm{~V}$	-	-	-	-	-	0	± 300	mV
RGB output DC fluctuation in tint control mode	$\Delta \mathrm{Ergbt}^{\text {r }}$	Maximum value of $\mathrm{Ero}_{\mathrm{r}} \mathrm{E}$ go, Eво fluctuation Tint control = max./typ. $/$ min. Color control = max.	-	-	-	-	-	0	± 300	mV
Y input DC fluctuation in color control mode	Δ EYic	$\begin{aligned} & \text { Color control }=\mathrm{max} . / \text { min. } \\ & \text { Tint control }=2.0 \mathrm{~V} \end{aligned}$	-	-	-	-	-	0	± 300	mV
Y input DC fluctuation in tint control mode	Δ Eyit	$\begin{aligned} & \text { Tint control = max./typ./min. } \\ & \text { Color control = max. } \end{aligned}$	-	-	-	-	-	0	± 300	mV
Y input pin voltage	EYı		-	-	-	-	1.6	2.0	2.4	V

Notes 1. From R, G and B output voltages $R 1, G 1$ and $B 1$ when signal is input only to $R-Y$ and R, G, and B output voltages R2, G2 and B2 when signal is input only to $B-Y, R, G, B$ demodulation ratio and demodulation angles are obtained by the following expressions:

$$
\begin{aligned}
& \left(\frac{R-Y}{B-Y}\right)=\sqrt{\frac{R_{1}^{2}+R_{2}^{2}}{B_{1}^{2}+B_{2}^{2}}},\left(\frac{G-Y}{B-Y}\right)=\sqrt{\frac{G_{1}^{2}+G_{2}^{2}}{B_{1}^{2}+B_{2}^{2}}} \\
& \angle R-Y=-\tan ^{-1} \frac{R_{2}}{R_{1}}-\tan ^{-1} \frac{B_{1}}{B_{2}}+90^{\circ} \\
& \angle G-Y=-\tan ^{-1} \frac{G_{1}-\sqrt{3} G_{2}}{\sqrt{3} G_{1}+G_{2}}-\tan ^{n-1} \frac{B_{1}}{B_{2}}+240^{\circ}
\end{aligned}
$$

2. Clamp pulse input voltage which gets $80 \mu \mathrm{~A}$ or more at Y input pin voltage $=\mathrm{Vcc}$.

Remark For the input signal, see Measuring Input Signal.

Measuring Input Signal

- Stair step
(1) 400 mV p-p

(2) $1 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$

- Sync. signal ($300 \mathrm{mV} \mathrm{p}-\mathrm{p}$) only

- Sine wave
(1) $400 \mathrm{mV}_{\mathrm{p}-\mathrm{p}}$
(2) 400 mV p-p

(3) $400 \mathrm{mV}_{\mathrm{p}-\mathrm{p}}$

- Color bar
(1)

(2) Variable burst or chroma signal amplitude

- Rainbow color bar (300 mV p -p)

- Burst ($\mathbf{3 0 0} \mathbf{~ m V} \mathrm{p}$-p) only

Timing chart (horizontal period)

Timing chart (vertical period/standard signal input)

Remark H represents horizontal scanning period.

Notes 1. Crystal resonator for load of 16 pF .
4.433619 MHz (PAL) : DAISHINKU CORP. (Type: HC-49/U)
3.579545 MHz (NTSC) : Toyo Communication Equipment Co., Ltd. (Type: TQC203A-8R)

Notes 1. Crystal resonator for load of 16 pF
3.579545 MHz (NTSC) : Toyo Communication Equipment Co., Ltd. (Type: TQC203A-8R)
2. CSB500F23: Murata Mfg. Co.,Ltd.

Notes 1. Crystal resonator for load of 16 pF .
4.433619 MHz (PAL) : DAISHINKU CORP. (Type: HC-49/U)
2. CSB500F23: Murata Mfg. Co.,Ltd.

Notes 1. Crystal resonator for load of 16 pF
4.433619 MHz (PAL) : DAISHINKU CORP. (Type: HC-49/U)
3.579545 MHz (NTSC) : Toyo Communication Equipment Co., Ltd. (Type: TQC203A-8R)

8. OPERATING PRECAUTIONS

8.1 μ PC1830 External Components

(1) Resistors

Use E24 series resistors (approximately 5\% precision) of $1 / 4 \mathrm{~W}$ or higher.

(2) Capacitors

- Ceramic capacitors of $\mathbf{1 0 0 0}$ pF or below

Capacitors used for the time constant circuit. Basically use E12 series (10% precision) ones with the center value $=0$ in nominal temperature characteristic.

- Ceramic capacitors of 1000 pF or higher

Equivalent to capacitors for non-critical time constant circuits and for clamp, and bypass capacitors between power supply and GND. Use E12 series (10% precision) ones. Use a type whose capacitance is not extremely affected by temperature variations (ie. with an excellent temperature characteristic).

- Electrolytic capacitors

Use E6 series (20% precision) ones. Use ones whose capacitance is not extremely affected by temperature variations (ie. with an excellent temperature characteristic).

(3) Crystal resonators

Use crystal resonators of 16 pF load type as shown below.

- For PAL : 4.433 619 MHz (model name: HC-49/U, manufactured by Kinseki, Ltd.)
- For NTSC : 3.579545 MHz (model name: TQC203A-8R (HC-49/U-10 type), manufactured by Toyo Communication Equipment Co., Ltd.)

Note that use of crystal resonators other than the above may deteriorate electrical characteristics.

(4) Ceramic resonators

Use ceramic resonators as shown below.

- CSB500 F23 (manufactured by Murata Mfg. Co., Ltd.)

Note that use of ceramic resonators other than the above may deteriorate mainly electrical characteristics of the sync. section.

$8.2 \mu \mathrm{PC} 1830$ Pattern Wiring

(1) GND line

Solid grounding should be applied to three GNDs: synchronous section GND (pin 5), video section GND (pin 15) and chroma section GND (pin 33). They should not be connected to other digital GNDs except the one point of origin. Use thick connection (thick through hole) for each GND pin of the IC.
When an emitter follower circuit, amplifier, etc. is connected to the color difference output stage or RGB output stage, separate the solid ground of the output stage from that of the IC output stage.

(2) Power supply line

The three analog power supplies, synchronous section power supply (pin 7), video section power supply (pin 17) and chroma section power supply (pin 35) should be independent of each other and unified at the supply source. Ensure that there is no unnecessary routing.
Separate the digital section power supply from the analog section power supply and connect them only at one point.

(3) Signal line

In order to avoid signal cross talk, ensure that the color difference signal line (pins 12, 13, and 14) and RGB signal line (pins 23, 24, and 25) are not placed close to or in parallel with the digital signal line or HD (pin 10), VD (pin 11) and BLK (pin 9) lines, or cross those lines.
(4) Placement of peripheral components of each pin

Place components which are connected with pins $1,2,5,7,15,16,17,18,19,23,24,25,28,29,33,34$, and 35 close to the IC. When the placed components are connected to the power supply line or other lines, route low-impedance lines and make sure that the thickest possible lines are used for connection with the IC pins.

9. PACKAGE DRAWING

42 PIN PLASTIC SHRINK SOP (375 mil)

detail of lead end

note
Each lead centerline is located within 0.10 mm (0.004 inch) of its true position (T.P.) at maximum material condition.

		S42GT-80-375
ITEM	MILLIMETERS	INCHES
A	18.16 MAX.	0.715 MAX.
B	1.13 MAX.	0.044 MAX.
C	0.8 (T.P.)	0.031 (T.P.)
D	$0.35_{-0.05}^{+0.10}$	$0.014_{-0.003}^{+0.004}$
E	0.125 ± 0.075	0.005 ± 0.003
F	2.9 MAX.	0.115 MAX.
G	2.5 ± 0.2	$0.098{ }_{-0.008}^{+0.009}$
H	10.3 ± 0.3	$0.406_{-0.013}^{+0.012}$
1	7.15 ± 0.2	$0.281_{-0.008}^{+0.009}$
J	1.6 ± 0.2	0.063 ± 0.008
K	$0.155_{-0.05}^{+0.10}$	$0.006_{-0.002}^{+0.004}$
L	0.8 ± 0.2	$0.031_{-0.008}^{+0.009}$
M	0.10	0.004
N	0.10	0.004

10. RECOMMENDED SOLDERING CONDITIONS

When soldering this product, it is highly recommended to observe the conditions as shown below. If other soldering processes are used, or if the soldering is performed under different conditions, please make sure to consult with our sales offices.

For more details, refer to our document "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (C10535E).

Surface Mount Device

μ PC1830GT: 42-pin plastic shrink SOP (375 mil)

Process	Conditions	Symbol
Infrared ray reflow	Peak temperature: $235^{\circ} \mathrm{C}$ or below (Package surface temperature), Reflow time: 30 seconds or less (at $210^{\circ} \mathrm{C}$ or higher), Maximum number of reflow processes: 2 times.	IR35-00-2
Vapor phase soldering	Peak temperature: $215^{\circ} \mathrm{C}$ or below (Package surface temperature), Reflow time: 40 seconds or less (at $200{ }^{\circ} \mathrm{C}$ or higher), Maximum number of reflow processes: 2 times.	VP15-00-2
Partial heating method	Pin temperature: $300^{\circ} \mathrm{C}$ or below, Heat time: 3 seconds or less (Per each side of the device).	-

Caution Apply only one kind of soldering condition to a device, except for "partial heating method", or the device will be damaged by heat stress.
[MEMO]

[MEMO]

The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.

