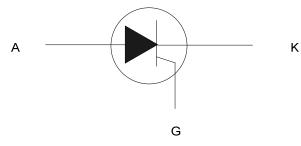
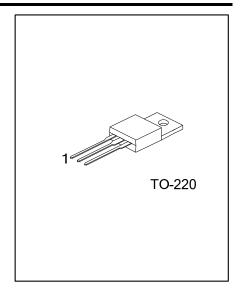


UTC UNISONIC TECHNOLOGIES CO., LTD


US108S/N


SCRS

DESCRIPTION

The UTC US108S/N is suitable to fit all modes of control, found in applications such as overvoltage crowbar protection, motor control circuits in power tools and kitchen aids, inrush current limiting circuits, capacitive discharge ignition and voltage regulation circuits.

SYMBOL

ORDERING INFORMATION

Ordering Number		Daakaga	Pin Assignment			Dealing	
Lead Free	Halogen Free	Package		2	3	Packing	
US108SL-4-TA3-T	US108SG-4-TA3-T	TO-220	К	А	G	Tube	
US108SL-6-TA3-T	US108SG-6-TA3-T	TO-220	K	Α	G	Tube	
US108SL-8-TA3-T	US108SG-8-TA3-T	TO-220	К	А	G	Tube	
US108NL-4-TA3-T	US108NG-4-TA3-T	TO-220	К	А	G	Tube	
US108NL-6-TA3-T	US108NG-6-TA3-T	TO-220	K	Α	G	Tube	
US108NL-8-TA3-T	US108NG-8-TA3-T	TO-220	К	А	G	Tube	
Note: Pin Assignment: K: Cathode G: Gate A: Anode							

US108SL-4- <u>TA3-</u> T US108SL-4- <u>TA3-</u> T (1)Packing Type	(1) T: Tube
(2)Package Type	(2) TA3: TO-220
(3)Lead Free	(3) G: Halogen Free, L: Lead Free

■ ABSOLUTE MAXIMUM RATING

PARAMETER			SYMBOL	RATING	UNIT	
U	US108S/N-4		N/	400		
Repetitive Peak Off-State Voltages	JS108S/N-6			600	V	
U	IS108S/N-8		V _{RRM}	800		
RMS On-State Current (180°Conduction	on Angle) (T _c	I _{T(RMS)}	8	А		
Average On-State Current (180°Condu	uction Angle)	I _{T(AV)}	5	Α		
	t =0.0mm	US108S		73		
Non Repetitive Surge Peak On-State Current (T _J = 25 $^{\circ}$ C)	t _P =8.3ms	US108N	1.[100		
	t _P =10ms	US108S	ITSM	70	A	
		US108N		95		
I ² t Value For Fusing (t _P = 10 ms ,T _J = 25 $^{\circ}$ C) US108S US108N			124	24.5	A 20	
			l²t -	45	A²S	
Critical Rate Of Rise Of On-State Curr	ent	al / al t	50	A /		
(I_G = 2 x I_{GT} , t_R ≤ 100 ns, T_J = 125 $^\circ$ C , F	dl/dt	50	A/µs			
Peak Gate Current (t _P =20 μ s, T _J = 125 $^{\circ}$ C)			I _{GM}	4	Α	
Peak Reverse Gate Voltage US108			V _{RGM}	5	V	
Average Gate Power Dissipation (T _J = 125° C)			P _{G(AV)}	1	W	
Storage Temperature			T _{STG}	-40 ~ +150	°C	
Junction Temperature	TJ	-40 ~ +125	°C			

Note 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

THERMAL DATA

PARAMETER	SYMBOL RATINGS		UNIT	
Junction to Ambient	θ_{JA}	60	K/W	
Junction to Case	θ_{JC}	20	K/W	

■ ELECTRICAL CHARACTERISTICS (T_J=25°C unless otherwise specified)

US108S(SENSITIVE)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Gate Trigger Current	I _{GT}	$V_{\rm D}$ = 12 V, $R_{\rm L}$ =140 Ω			200	μA
Gate Trigger Voltage	V _{GT}	$V_{\rm D}$ = 12 V, R _L =140 Ω			0.8	V
Gate Non-Trigger Voltage	V_{GD}	V _D = V _{DRM} , R _L = 3.3kΩ ,R _{GK} = 220 T _J = 125℃	0.1			V
Reverse Gate Voltage	V_{RG}	I _{RG} = 10 μA	8			V
Holding Current	I _H	I _T = 50mA, R _{GK} = 1kΩ			5	mA
Latching Current	١L	$I_G = 1 \text{mA}$, $R_{GK} = 1 \text{k}\Omega$			6	mA
Circuit Rate Of Change Of off-State Voltage	dV/dt	V_{D} = 65 % V_{DRM} , R_{GK} = 220 Ω	5			V/µs
On-State Voltage	V _{TM}	I _{TM} = 16A, t _P = 380 μs			1.6	V
Threshold Voltage	V _{T0}	T」= 125℃			0.85	V
Dynamic Resistance	R _D	T」= 125℃			46	mΩ
Off-State Leakage Current	I _{DRM}	$V_{DRM} = V_{RRM}, R_{GK} = 220\Omega$			5	μA
	I _{RRM}	$V_{\text{DRM}} = V_{\text{RRM}}, R_{\text{GK}} = 220\Omega$			1	mA

■ ELECTRICAL CHARACTERISTICS(Cont.)

US108N(SENSITIVE)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Gate Trigger Current	I _{GT}	$V_{\rm D}$ = 12V, R _L =33Ω	2		15	mA
Gate Trigger Voltage	V _{GT}	V _D = 12V, R _L =33Ω			1.3	V
Gate Non-Trigger Voltage	V_{GD}	$V_D = V_{DRM}, R_L = 3.3 \text{ k}\Omega$	0.2			V
Holding Current	I _H	I _T = 100mA Gate open			30	mA
Latching Current	١L	$I_{\rm G}$ = 1.2 $I_{\rm GT}$			70	mA
Circuit Rate Of Change Of off-State Voltage	dV/dt	V _D = 67 % V _{DRM} Gate open	150			V/µs
On-State Voltage	V _{TM}	I _{TM} = 16 A, t _P = 380 μs			1.6	V
Threshold Voltage	V _{t0}	T 」 = 125℃			0.85	V
Dynamic Resistance	RD	TJ = 125℃			16	mΩ
Off Otata Laskana Ourrent	I _{DRM}	$V_{\text{DRM}} = V_{\text{RRM}}$			5	μA
Off-State Leakage Current	I _{RRM}	$V_{DRM} = V_{RRM}$			2	mA

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

