RENESAS

R2A20112ASP

Critical Conduction Mode Interleaved PFC Control IC

R03DS0047EJ0100 Rev.1.00 Jul 21, 2011

Description

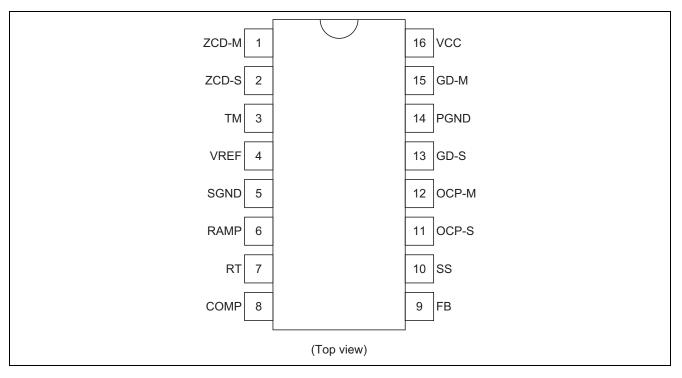
The R2A20112A controls a boost converter to provide an active power factor correction.

The R2A20112A adopts critical conduction mode for power factor correction and realizes high efficiency and a low switching noise by zero current switching.

Interleaving function improves ripple current on input or output capacitor by 180 degrees phase shift.

Soft-star, the feedback loop short detection, two mode over-voltage-protection, over-current-protection, Over current ON/OFF timer protection for boost Diode short and slave ZCD open detection are built in the R2A20112A, and can constitute a power supply system of high reliability with few external parts.

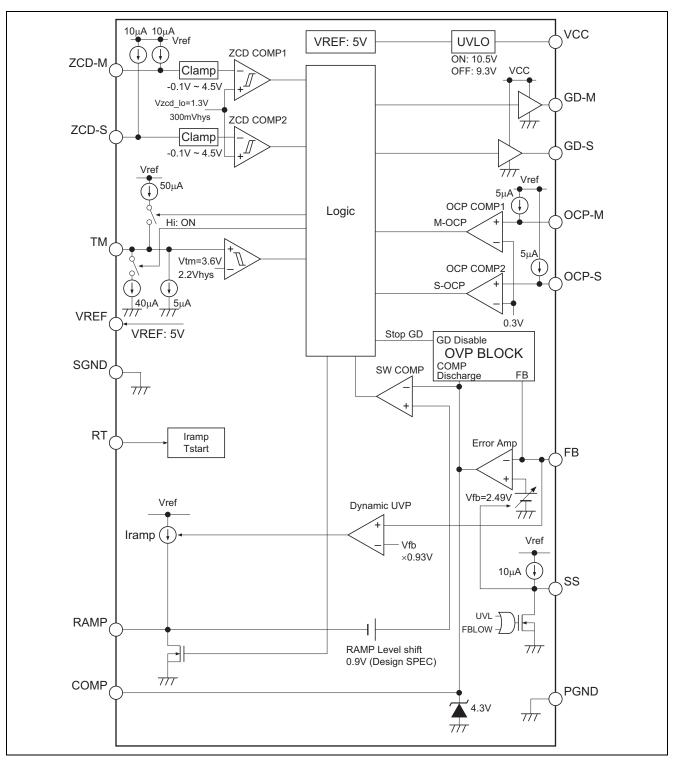
Features


- Absolute Maximum Ratings
 - Supply voltage Vcc: 24 V
 - Operating junction temperature Tjopr: -40 to +150°C
- Electrical Characteristics
 - VREF output voltage Vref: $5.0 V \pm 1.5\%$
 - UVLO operation start voltage Vuvlh: 10.5 V \pm 0.7 V
 - UVLO operation shutdown voltage Vuvll: 9.3 V \pm 0.5 V
 - UVLO hysteresis voltage Hysuvl: $1.2 \text{ V} \pm 0.5 \text{ V}$
- Functions
 - Boost converter control with critical conduction mode
 - Interleaving control
 - Soft start function for the reference voltage of Error Amp
 - Two mode PFC output Over-voltage-protection
 Mode1: Dynamic OVP corresponding to a voltage rise by dynamic load change.
 Mode2: Static OVP corresponding to over-voltage in stable.
 - PFC output Dynamic-under-voltage-protection (DUVP)
 - Feedback loop open/short detection
 - Master and Slave independence over-current-protection
 - 280 µs restart timer
 - Slave ZCD signal open detection
 - Over current ON/OFF timer protection for boost Diode short
- Package
 - Pb-free SOP-16

Ordering Information

Part No.	Package Name	Package Code	Package Abbreviation	Taping Abbreviation (Quantity)
R2A20112ASPW0	FP-16DAV	PRSP0016DH-B	SP	W (2,000 pcs/reel)

Pin Arrangement



Pin Functions

Pin No.	Pin Name	Function			
1	ZCD-M	Master converter zero current detection input terminal			
2	ZCD-S	Slave converter zero current detection input terminal			
3	ТМ	Over current ON/OFF timer protection terminal			
4	VREF	Reference voltage output terminal			
5	SGND	Signal Ground			
6	RAMP	Ramp waveform setting terminal			
7	RT	Oscillator frequency setting terminal			
8	COMP	Error amplifier output terminal			
9	FB	Error amplifier input terminal			
10	SS	Soft start time setting terminal			
11	OCP-S	Slave converter overcurrent detection terminal			
12	OCP-M	Master converter overcurrent detection terminal			
13	GD-S	Slave converter Power MOSFET drive terminal			
14	PGND	Power Ground			
15	GD-M	Master converter Power MOSFET drive terminal			
16	VCC	Supply voltage terminal			

Block Diagram

Absolute Maximum Ratings

				$(Ta = 25^{\circ}C)$
Item	Symbol	Ratings	Unit	Notes
Supply voltage	VCC	-0.3 to +24	V	
GD terminal peak current	lpk-gd	-300 mA +1200		3
GD terminal DC current	ldc-gd	-15 +60	mA	
ZCD terminal current	eurrent Izcd +3 -3		mA	
RT terminal current	Irt	-200	μΑ	4
Vref terminal current	Iref	-5	mA	
Vref terminal load capacitor	Cref min	1000	pF	
	Cref max	1	μF	
COMP terminal current	Icomp	±1	mA	
Terminal voltage	Vt-group1	-0.3 to Vcc	V	5
	Vt-group2	–0.3 to Vref	V	6
Vref terminal voltage	Vt-ref	-0.3 to Vref + 0.3	V	
OCP terminal voltage	Vt-ocp	*-1 to Vref	V	7
Power dissipation	Pt	1	W	8
Operating junction temperature	Tj-opr	-40 to +150	°C	
Storage temperature	Tstg	-55 to +150	°C	

Notes: 1. Rated voltages are with reference to the PGND terminal.

2. For rated currents, inflow to the IC is indicated by (+), and outflow by (-).

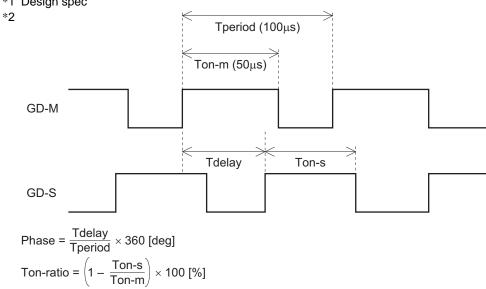
3. Shows the transient current when driving a capacitive load.

4. RT terminal's resistor is fixed 33 k Ω to GND.

- 5. This is the rated voltage for the following pins: Nothing
- 6. This is the rated voltage for the following pins: FB, SS, RAMP, TM

7. Minus value is peak voltage. Do not impress the DC voltage of the minus.

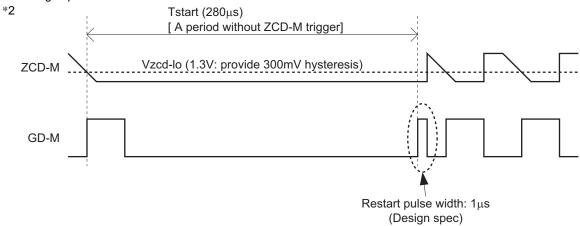
8. θja = 120°C/W


This value is a thing mounting on 40×40 (thickness: 1.6 mm) [mm²], a glass epoxy board of wiring density 10%.

Electrical Characteristics

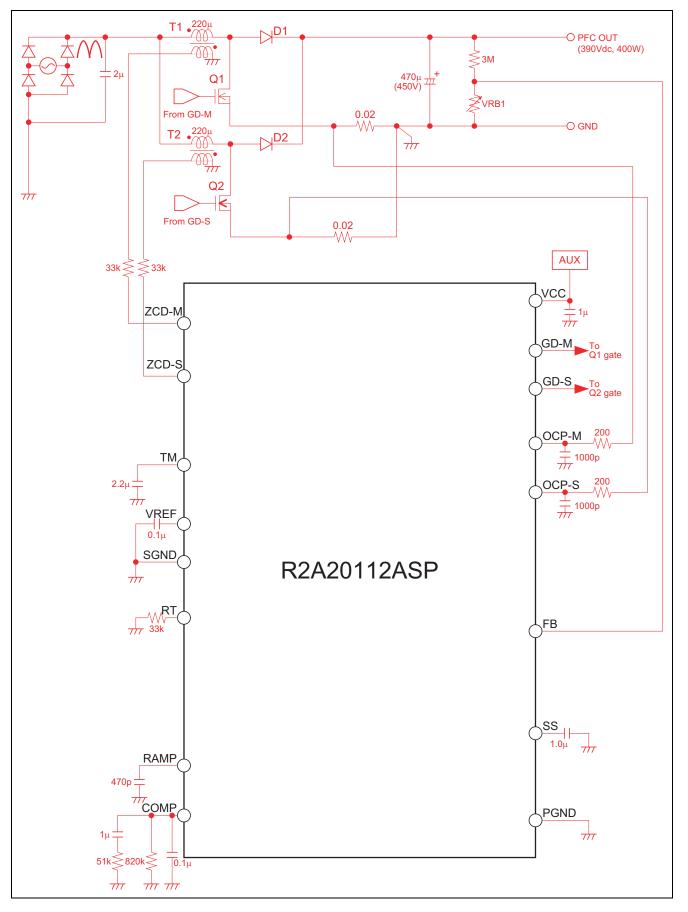
Item		Symbol	Min	Тур	Max	Unit	Test Conditions	
Supply	UVLO turn-on threshold	Vuvlh	9.8	10.5	11.2	V		
	UVLO turn-off threshold	Vuvll	8.8	9.3	9.8	V		
	UVLO hysteresis	Hysuvl	0.7	1.2	1.7	V		
	Standby current	Istby	—	85	170	μA	VCC = 8.9 V	
	Operating current	Icc	—	4.2	6.3	mA		
VREF	Output voltage	Vref	4.925	5.00	5.075	V	Isource = -1 mA	
	Line regulation	Vref-line	_	5	20	mV	Isource = -1 mA Vcc = 10 V to 24 V	
	Load regulation	Vref-load	_	5	20	mV	Isource = -1 mA to -5 mA	
	Temperature stability	dVref	—	±80		ppm/°C	Ta = -40 to +125°C * ¹	
Error	Feedback voltage	Vfb	2.452	2.490	2.528	V	FB-COMP short	
amplifier	Input bias current	lfb	-0.5	-0.3	-0.1	μA	Measured pin: FB FB = 3 V * ¹	
	Open loop gain	Av	—	60	_	dB	*1	
	Upper clamp voltage	Vclamp-comp	4.2	4.3	4.4	V	FB = 2.0 V	
	Low voltage	VI-comp	_	0.1	0.3	V	FB = 3.0 V	
	Source current	Isrc-comp	—	-120	—	μΑ	FB = 1.5 V COMP = 2.5 V * ¹	
	Sink current	Isnk-comp	_	330	_	μA	FB = 3.5 V COMP = 2.5 V	
	Transconductance	gm	120	200	290	μS	FB = 2.45V ↔ 2.55 V COMP = 2.5 V	
Ramp	RAMP charge current at DUVP disable condition	lc-ramp1	-60	-50	-40	μA	FB = 2.4 V	
	RAMP charge current at DUVP enable condition	lc-ramp2	-32	-25	-18	μΑ	FB = 2 V	
	RAMP discharge current	ld-ramp	7	15	29	mA	RAMP = 1 V	
	Low voltage	VI-ramp	—	17	200	mV	lsink = 100 μA	
Slave	Phase delay	Phase	160	180	200	deg	FB = 2.5 V, COMP = 2 V	
control	On time ratio	Ton-ratio	0	_	5	%	* ^{1, 2}	

Notes: *1 Design spec

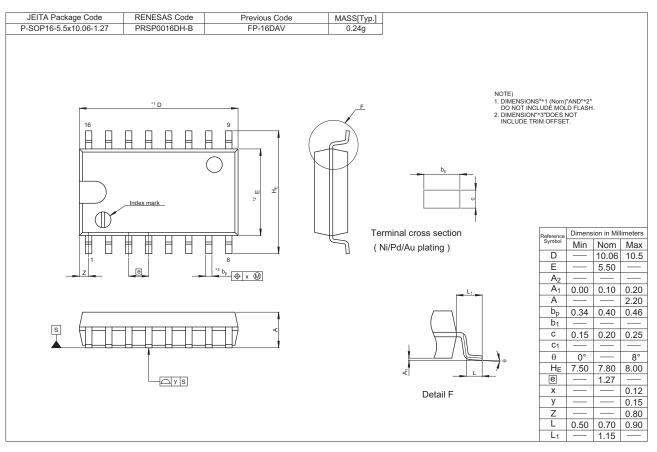


Electrical Characteristics (cont.)

 $(Ta = 25^{\circ}C, VCC = 12 V, RT = 33 k\Omega, RAMP = 820 pF, TM = 2.2 \mu F, SS = 1.0 \mu F, OCP = GND)$


Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Gate drive (GD-M &	Gate drive rise time	tr-gd	_	20	100	ns	FB-COMP short 90% CL = 100 pF 10%
GD-S)	Gate drive fall time	tf-gd	_	5	30	ns	FB-COMP short 90% CL = 100 pF 10%
	Gate drive low voltage	Vol1-gd	—	0.02	0.1	V	Isink = 2 mA
		Vol2-gd	—	0.01	0.2	V	Isink = 1 mA, VCC = 5 V
	Gate drive high voltage	Voh-gd	11.5	11.9	—	V	Isource = $-2 \text{ mA} *^1$
Over current	OCP threshold voltage	Vocp	0.27	0.30	0.33	V	
protection (OCP-M & OCP-S	OCP source current	Іоср	-10	-5	-2.5	μA	OCP = 0 V
ON/OFF timer	ON/OFF timer threshold voltage	Vtm	3.52	3.6	3.68	V	
protection for	ON/OFF timer hysteresis	Hys-tm	2.1	2.2	2.3	V	
Boost diode	Charge current	Isrc-tm	-54	-45	-36	μΑ	TM = 2 V, OCP-M = 1 V
short	Discharge current at TM disable condition	lsnk-tm1	36	45	54	μΑ	TM = 2 V
	Discharge current at TM enable condition	lsnk-tm2	4.2	5	5.8	μΑ	TM = 5 V to 2 V
PFC output abnormality	Dynamic OVP threshold voltage	Vdovp	Vfb× 1.035	Vfb× 1.050	Vfb× 1.065	V	COMP = 2.5 V
protection	Static OVP threshold voltage	Vsovp	Vfb× 1.075	Vfb× 1.090	Vfb× 1.105	V	COMP = 2.5 V
	Static OVP hysteresis	Hys-sovp	50	100	150	mV	COMP = 2.5 V
	Dynamic UVP threshold voltage	Vduvp	_	Vfb× 0.930	Vfb× 0.950	V	COMP = 2.5 V * ¹
	FB low detect threshold voltage	Vfblow	0.45	0.50	0.55	V	COMP = 2.5 V
	FB low detect hysteresis	Hysfblow	0.16	0.20	0.24	V	COMP = 2.5 V
Zero current	Upper clamp voltage	Vzcdh	4.0	4.5	5.0	V	Isource = -3 mA
detector	Lower clamp voltage	Vzcdl	-0.5	-0.1	0.4	V	Isink = 3 mA
(ZCD-M &	ZCD low threshold voltage	Vzcd-lo	0.9	1.3	1.6	V	*1
ZCD-S)	ZCD hysteresis	Hyszcd	130	300	410	mV	*1
	Input bias current	Izcd	-14	-10	-6	μΑ	1.2 V < Vzcd < 2.5 V
ZCD-S open detector	Slave ZCD open detect delay time	tzcds	—	100	—	ms	ZCD-S: OPEN Gate drive 10 kHz * ¹
Soft start	Charge current	lc-ss	-14	-10	-6	μΑ	SS = 3 V, FB = 1 V
Restart	Restart time delay	Tstart	210	280	350	μS	ZCD-M = 10 kΩ to GND ZCD-S = 10 kΩ to GND $*^2$

Notes: *1 Design spec



System Diagram

Package Dimensions

Notice

- All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The recommended where you have failed to obtain the prior written consent of Renesas Electronics and the prior written consent of Renesas Electronics and the prior written consent of Renesas Electronics. The recommended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
- "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools
- personal electronic equipment; and industrial robots.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically
 designed for life support.
- *Specific*: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and mafunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and mafunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-4000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 1011 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220 Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Boume End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renesas Electronics Curope GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renesas Electronics Curope GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renesas Electronics (Shanghai) Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +486-12-4877-71818, Fax: +486-21-6877-71819, Fax: +486-21-6877-71818, Fax: +486-21-6876-71884 Renesas Electronics Taiwan Co., Ltd. 11 Faybourf: Faybourd, Fax: +480-21-685-6776 Renesas Electronics Korea Co., Ltd. 11F, Samik Lavied' on Billog, 720-2 Veoksam-Dong, Kangnam-Ku, Seoul 135-080, Ko